Abstract Ramsey theory 00000000

An alternative proof of the Mathias-Silver theorem using the Kastanas game

Clement Yung, University of Toronto

30 Nov 2024

Infinite-dimensional Ramsey theory

Infinite-dimensional Ramsey theory started with the study of infinite subsets of natural numbers, $[\mathbb{N}]^\infty$. Let's recall the definition.

Notation

Given
$$A \in [\mathbb{N}]^{\infty}$$
 and $a \in [A]^{<\infty}$, we write:

$$[a,A] := \{B \in [A]^{\infty} : a \sqsubseteq B\}$$

where $a \sqsubseteq B$ means that $B \cap \max(a) = a$.

Definition

A subset $\mathcal{X} \subseteq [\mathbb{N}]^{\infty}$ is *Ramsey* if for all $A \in [\mathbb{N}]^{\infty}$ and $a \in [A]^{<\infty}$, there exists some $B \in [a, A]$ such that $[a, B] \subseteq \mathcal{X}^c$ or $[a, B] \subseteq \mathcal{X}$.

Abstract Ramsey theory 00000000

Kastanas (1983) was examining the game-theoretic characterisation of Ramsey sets.

Definition (Kastanas)

Let $A \in [\mathbb{N}]^{\infty}$, and let $a \in [A]^{<\infty}$. The Kastanas game played below [a, A], denoted as K[a, A], is:

I
$$A_0 = A$$
 $A_1 \subseteq B_0$ $A_2 \subseteq B_1$ \cdots II $x_0 \in A_0$ $x_1 \in A_1$ \cdots $B_0 \subseteq A_0$ $B_1 \subseteq A_1$ \cdots

where:

- $\max(a) < x_0 < x_1 < \cdots$.
- A_n, B_n are infinite subsets of \mathbb{N} .

The outcome of the game is $a \cup \{x_0, x_1, \dots\} \in [a, A]$.

Abstract Ramsey theory 00000000

Definition

We say that I (similarly II) has a strategy in K[a, A] to reach $\mathcal{X} \subseteq [\mathbb{N}]^{\infty}$ if it has a strategy in K[a, A] to ensure rthe outcome is in \mathcal{X} .

Definition

A set $\mathcal{X} \subseteq [\mathbb{N}]^{\infty}$ is *Kastanas Ramsey* if for all $A \in [\mathbb{N}]^{\infty}$ and $a \in [A]^{<\infty}$, there exists some $B \in [a, A]$ such that one of the following holds:

- 1. I has a strategy in K[a, B] to reach \mathcal{X}^c .
- 2. II has a strategy in K[a, B] to reach \mathcal{X} .

Definition

We say that I (similarly II) has a strategy in K[a, A] to reach $\mathcal{X} \subseteq [\mathbb{N}]^{\infty}$ if it has a strategy in K[a, A] to ensure the outcome is in \mathcal{X} .

Definition

A set $\mathcal{X} \subseteq [\mathbb{N}]^{\infty}$ is Kastanas Ramsey if for all $A \in [\mathbb{N}]^{\infty}$ and $a \in [A]^{<\infty}$, there exists some $B \in [a, A]$ such that one of the following holds:

1. I has a strategy in K[a, B] to reach \mathcal{X}^c .

(Definition of Ramsey: $[a, B] \subseteq \mathcal{X}^{c}$.)

2. II has a strategy in K[a, B] to reach \mathcal{X} .

(Definition of Ramsey: $[a, B] \subseteq \mathcal{X}$.)

Abstract Ramsey theory 00000000

Theorem (Kastanas)

A set $\mathcal{X} \subseteq [\mathbb{N}]^{\infty}$ is Ramsey iff Kastanas Ramsey.

Abstract Ramsey theory 00000000

There are two well-known descriptive set-theoretic facts about Ramsey subsets of $[\mathbb{N}]^{\infty}$.

Theorem (Galvin-Prikry)

Every Borel subset of $[\mathbb{N}]^{\infty}$ is Ramsey.

Theorem (Mathias-Silver)

Every analytic subset of $[\mathbb{N}]^{\infty}$ is Ramsey.

By the Borel determinacy on \mathbb{R}^{ω} , the Galvin-Prikry theorem follows from Kastanas' result. However, it is not enough to prove the Mathias-Silver theorem.

Abstract Ramsey theory 00000000

Goal. Provide a proof of the Mathias-Silver theorem in the following steps:

- 1. Define a version of the Kastanas game (and Kastanas Ramsey sets) on $[\mathbb{N}]^{\infty} \times 2^{\infty}$. By the Borel determinacy for Polish spaces, all Borel subsets of $[\mathbb{N}]^{\infty} \times 2^{\infty}$ are Kastanas Ramsey.
- 2. Show that Kastanas Ramsey sets are closed under projections. Therefore, analytic subsets of $[\mathbb{N}]^{\infty}$ are Kastanas Ramsey.
- 3. By Kastanas' theorem, analytic subsets of $[\mathbb{N}]^\infty$ are Ramsey.

Abstract Ramsey theory 00000000

Kastanas game on $[\mathbb{N}]^{\infty} imes 2^{\infty}$

Definition

Let $A \in [\mathbb{N}]^{\infty}$, and let $a \in [\mathbb{N}]^{<\infty}$ and $p \in 2^{|a|}$. The Kastanas game played below [a, A, p], denoted as K[a, A, p], is:

I	$A_0 = A$		$A_1 \subseteq B_0$		• • •
II		$x_0 \in A_0$		$x_1 \in A_1$	•••
		$arepsilon_{0}\in\{0,1\}$		$arepsilon_1\in\{0,1\}$	•••
		$B_0 \subseteq A_0$		$B_1\subseteq A_1$	• • •

where:

- $\max(a) < x_0 < x_1 < \cdots$.
- A_n, B_n are infinite subsets of N.
 The outcome of the game is

 (a ∪ {x₀, x₁, ...}, p<sup>(ε₀, ε₁, ...)) ∈ [a, A] × 2[∞].

 </sup>

Abstract Ramsey theory 00000000

Definition

We say that I (similarly II) has a strategy in K[a, A, p] to reach $C \subseteq [\mathbb{N}]^{\infty} \times 2^{\infty}$ if it has a strategy in K[a, A, p] to ensure the outcome is in C.

Definition

A set $C \subseteq [\mathbb{N}]^{\infty} \times 2^{\infty}$ is *Kastanas Ramsey* if for all $A \in [\mathbb{N}]^{\infty}$, $a \in [A]^{<\infty}$ and $p \in 2^{|a|}$, there exists some $B \in [a, A]$ such that one of the following holds:

- 1. I has a strategy in K[a, B, p] to reach C^c .
- 2. II has a strategy in K[a, B, p] to reach C.

Abstract Ramsey theory 00000000

Let $\pi_0 : [\mathbb{N}]^\infty \times 2^\infty \to [\mathbb{N}]^\infty$ be the projection to the first coordinate.

Theorem

If $C \subseteq [\mathbb{N}]^{\infty} \times 2^{\infty}$ is Kastanas Ramsey, then $\pi_0[C] \subseteq [\mathbb{N}]^{\infty}$ is Kastanas Ramsey.

Abstract Ramsey theory 00000000

We split the proof of the theorem into two lemmas.

Lemma

Let $C \subseteq [\mathbb{N}]^{\infty} \times 2^{\infty}$ be a subset. Let $A \in [\mathbb{N}]^{\infty}$, $a \in [A]^{<\infty}$. If II has a strategy in K[a, A, p] to reach C for some $p \in 2^{\text{lh}(a)}$, then II has a strategy in K[a, A] to reach $\pi_0[C]$.

Proof.

The strategy by **II** in the game K[a, A, p] to reach C, with the ε_n 's ignored, is a strategy for **II** in K[a, A] to reach $\pi_0[C]$.

Lemma

Let $C \subseteq [\mathbb{N}]^{\infty} \times 2^{\infty}$ be a subset. Let $A \in [\mathbb{N}]^{\infty}$, $a \in [A]^{<\infty}$. If for all $p \in 2^{\text{lh}(a)}$, there exists some $C \in [a, A]$ such that I has a strategy in K[a, C, p] to reach C^c , then there exists some $B \in [a, A]$ such that I has a strategy in K[a, B] to reach $\pi_0[C]^c$.

Since $\pi_0[\mathcal{C}^c] \neq \pi_0[\mathcal{C}]^c$ in general, the same naive argument doesn't work here.

In the interest of time, we shall prove this lemma only for $a = \emptyset$.

Proof of the second Lemma

Let $B \in [A]^{\infty}$ and σ be a strategy for I in $K[\emptyset, B, \emptyset]$ (in $[\mathbb{N}]^{\infty} \times 2^{\infty}$) to reach \mathcal{C}^{c} . How do we define a strategy τ for I in $K[\emptyset, B]$ (in $[\mathbb{N}]^{\infty}$) to reach $\pi_{0}[\mathcal{C}]^{c}$?

- Say that the outcome of a complete run in K[Ø, B] (in [ℕ][∞]), following τ, is D = {x₀, x₁,...}.
- $D \notin \pi_0[\mathcal{C}]^c$ iff for all $x \in 2^\infty$, $(D, x) \in \mathcal{C}^c$.
- Goal. Design τ such that, for any outcome D and any x ∈ 2[∞] (in [N][∞]), there is a simulation of the game in K[Ø, B, Ø] (in [N][∞] × 2[∞]) following σ, such that the outcome is (D, x). By our choice of σ, (D, x) ∈ C^c.

K [∅,	<i>B</i>], defining τ for I:
Ĩ	$A_0 = B$
П	

K [∅,	B], defining $ au$ for I:
Ι	$A_0 = B$
П	$x_0 \in \mathcal{A}_0$
	$B_0\subseteq A_0$
(Sin	nulation) $\mathcal{K}[\emptyset, B, \emptyset]$, I following σ :
I	$A_0 = B$
11	
or	
Ι	$A_0 = B$
П	

$$\begin{array}{c|c} \mathcal{K}[\emptyset, B], \text{ defining } \tau \text{ for } \mathbf{I}: \\ \hline \mathbf{I} & A_0 = B \\ \hline \mathbf{II} & x_0 \in A_0 \\ & B_0 \subseteq A_0 \end{array} \end{array}$$

(Simulation) $K[\emptyset, B, \emptyset]$, I following σ : $\begin{array}{c|c}
\mathbf{I} & A_0 = B \\
\hline
\mathbf{II} & x_0 \in A_0 \\
 & \varepsilon_0 = 0 \\
\end{array}$ or

$$\begin{array}{c|c}
\mathbf{I} & A_0 = B \\
\hline
\mathbf{II} & x_0 \in A_0 \\
& \varepsilon_0 = 1
\end{array}$$

$$\begin{array}{c|c} \mathcal{K}[\emptyset, B], \text{ defining } \tau \text{ for } \mathbf{I}: \\ \hline \mathbf{I} & A_0 = B \\ \hline \mathbf{II} & x_0 \in A_0 \\ & B_0 \subseteq A_0 \end{array}$$

 $\begin{array}{c|c} \textbf{(Simulation)} \ \mathcal{K}[\emptyset, B, \emptyset], \ \textbf{I} \ \text{following} \ \sigma: \\ \hline \textbf{I} & A_0 = B \\ \hline \textbf{II} & x_0 \in A_0 \\ & \varepsilon_0 = 0 \\ & B_0 \subseteq A_0 \\ \end{array} \\ \text{or} \end{array}$

 $\begin{array}{c|c} \mathcal{K}[\emptyset, B], \text{ defining } \tau \text{ for } \mathbf{I}: \\ \hline \mathbf{I} & A_0 = B \\ \hline \mathbf{II} & x_0 \in A_0 \\ & B_0 \subseteq A_0 \end{array}$

 $\begin{array}{c|c} \textbf{(Simulation)} & \mathcal{K}[\emptyset, B, \emptyset], \ \textbf{I} \ \text{following} \ \sigma: \\ \hline \textbf{I} & A_0 = B & A_1^0 := \sigma(x_0, 0, B_0) \\ \hline \textbf{II} & x_0 \in A_0 \\ & \varepsilon_0 = 0 \\ & B_0 \subseteq A_0 \end{array}$

$$\begin{array}{c|c} \mathcal{K}[\emptyset, B], \text{ defining } \tau \text{ for } \mathbf{I}: \\ \hline \mathbf{I} & A_0 = B \\ \hline \mathbf{II} & x_0 \in A_0 \\ & B_0 \subseteq A_0 \end{array}$$

 $\begin{array}{c|c} \textbf{(Simulation)} & \mathcal{K}[\emptyset, B, \emptyset], \ \textbf{I} \text{ following } \sigma: \\ \hline \textbf{I} & A_0 = B & A_1^0 := \sigma(x_0, 0, B_0) \\ \hline \textbf{II} & x_0 \in A_0 \\ & \varepsilon_0 = 0 \\ & B_0 \subseteq A_0 \end{array}$

$$\begin{array}{c|c} \mathcal{K}[\emptyset, B], \text{ defining } \tau \text{ for } \mathbf{I}: \\ \hline \mathbf{I} & A_0 = B \\ \hline \mathbf{II} & x_0 \in A_0 \\ & B_0 \subseteq A_0 \end{array}$$

 $\begin{array}{c|c} \textbf{(Simulation)} & \mathcal{K}[\emptyset, B, \emptyset], \ \textbf{I} \ \text{following} \ \sigma: \\ \hline \textbf{I} & A_0 = B & A_1^0 := \sigma(x_0, 0, B_0) \\ \hline \textbf{II} & x_0 \in A_0 \\ & \varepsilon_0 = 0 \\ & B_0 \subseteq A_0 \end{array}$

$\begin{array}{c|c} \mathcal{K}[\emptyset, B], \text{ defining } \tau \text{ for } \mathbf{I}: \\ \hline \mathbf{I} & A_0 = B & \tau(x_0, B_0) := A_1^1 \\ \hline \mathbf{II} & x_0 \in A_0 \\ & B_0 \subseteq A_0 \end{array}$

 $\begin{array}{c|c} \textbf{(Simulation)} & \mathcal{K}[\emptyset, B, \emptyset], \ \textbf{I} \text{ following } \sigma: \\ \hline \textbf{I} & A_0 = B & A_1^0 := \sigma(x_0, 0, B_0) \\ \hline \textbf{II} & x_0 \in A_0 \\ & \varepsilon_0 = 0 \\ & B_0 \subseteq A_0 \end{array}$

K [Ø,	B], defining $ au$ for I:		
I	$A_0 = B$	$\tau(x_0,B_0):=A_1^1$	
11	$x_0 \in A_0$		$x_1 \in A_1$
	$B_0 \subseteq A_0$		$B_1 \subseteq A_1$

(Simulation) $\mathcal{K}[\emptyset, B, \emptyset]$, I following σ : $\begin{array}{c|c}
\mathbf{I} & A_0 = B & A_1^0 := \sigma(x_0, 0, B_0) \\
\hline
\mathbf{II} & x_0 \in A_0
\end{array}$

$$\varepsilon_0 = 0$$
$$B_0 \subseteq A_0$$

$K[\emptyset]$, <i>B</i>], defining $ au$ for I :		
Ī	$A_0 = B$	$\tau(x_0,B_0):=A_1^1$	
	$x_0 \in A_0$		$x_1 \in A_1$
	$B_0 \subseteq A_0$		$B_1 \subseteq A_1$

(Sin	(Simulation) $K[\emptyset, B, \emptyset]$, I following σ ($\varepsilon_0 = 0$):			
Ι	$A_0 = B$	$A_1^0 := \sigma(x_0, 0, B_0)$		
11	$x_0 \in A_0$	$x_1 \in A_1^1$		
	$\varepsilon_0 = 0$	$arepsilon_1=0$		
	$B_0 \subseteq A_0$			

K[Ø	, <i>B</i>], defining τ for I:		
Ĩ	$A_0 = B$	$\tau(x_0,B_0):=A_1^1$	
	$x_0 \in A_0$		$x_1 \in A_1$
	$B_0 \subseteq A_0$		$B_1 \subseteq A_1$

Simulation) $K[\emptyset, B, \emptyset]$, I following σ ($\varepsilon_0 = 0$):					
$A_0 = B$	$A_1^0 := \sigma(x_0, 0, B_0)$	$A_2^0 := \sigma(x_0, 0, B_0, x_1, 0, B_1)$			
$x_0 \in A_0$	$x_1\in \mathcal{A}_1^1$				
$\varepsilon_0 = 0$	$\varepsilon_1 = 0$				
$B_0 \subseteq A_0$	$B_1\subseteq A_1^1$				
	ulation) $K[\emptyset, B, \emptyset],$ $A_0 = B$ $x_0 \in A_0$ $\varepsilon_0 = 0$ $B_0 \subseteq A_0$	$ \begin{array}{c} \textbf{ulation)} \ \mathcal{K}[\emptyset, B, \emptyset], \ \textbf{I} \ \text{following} \ \sigma \ (\varepsilon_0 = 0): \\ \hline A_0 = B & A_1^0 := \sigma(x_0, 0, B_0) \\ \hline x_0 \in A_0 & x_1 \in A_1^1 \\ \hline \varepsilon_0 = 0 & \varepsilon_1 = 0 \\ B_0 \subseteq A_0 & B_1 \subseteq A_1^1 \end{array} $			

$K[\emptyset$, <i>B</i>], defining $ au$ for I :		
I	$A_0 = B$	$\tau(x_0,B_0):=A_1^1$	
П	$x_0 \in A_0$		$x_1 \in A_1$
	$B_0 \subseteq A_0$		$B_1 \subseteq A_1$

(Sin	nulation) $K[\emptyset, B, \emptyset]$,	I following σ ($\varepsilon_0 = 0$):	
Ι	$A_0 = B$	$A_1^0 := \sigma(x_0, 0, B_0)$	$A_2^0 := \sigma(x_0, 0, B_0, x_1, 0, B_1)$
II	$x_0 \in A_0$	$x_1 \in A_1^1$	
	$\varepsilon_0 = 0$	$\varepsilon_1 = 0$	
	$B_0 \subseteq A_0$	$B_1\subseteq A_1^1$	

$K[\emptyset]$, B], defining $ au$ for I:		
I	$A_0 = B$	$\tau(x_0,B_0):=A_1^1$	
П	$x_0 \in A_0$		$x_1 \in A_1$
	$B_0 \subseteq A_0$		$B_1 \subseteq A_1$

(Sin	nulation) $K[\emptyset,$	B, \emptyset], I following	g σ ($\varepsilon_0 = 1$):	
I	$A_0 = B$	$A_1^1 := \sigma(A_1)$	$(x_0, 1, A_1^0)$	
П	x ₀	$\in A_0$	$x_1\in \mathcal{A}_1^1$	
	ε0	= 1	$\varepsilon_1 = 0$	
	$ $ A_1^0	$\subseteq A_0$	$A_2^1\subseteq A_1^1$	

K[Ø,	B], defining τ for I:		
I	$A_0 = B$	$\tau(x_0,B_0):=A_1^1$	
11	$x_0 \in A_0$		$x_1 \in A_1$
	$B_0 \subseteq A_0$		$B_1 \subseteq A_1$

 $\begin{array}{c|c} \textbf{(Simulation)} \ & \mathcal{K}[\emptyset, B, \emptyset], \ \textbf{I} \ following \ \sigma \ (\varepsilon_0 = 1): \\ \hline \textbf{I} & A_0 = B & A_1^1 := \sigma(x_0, 1, A_1^0) & A_2^2 := \sigma(x_0, 1, B_0, x_1, 0, A_2^1) \\ \hline \textbf{II} & x_0 \in A_0 & x_1 \in A_1^1 \\ & \varepsilon_0 = 1 & \varepsilon_1 = 0 \\ & A_1^0 \subseteq A_0 & A_2^1 \subseteq A_1^1 \end{array}$

$K[\emptyset,$	B], defining τ for I:		
Ι	$A_0 = B$	$\tau(x_0,B_0):=A_1^1$	
11	$x_0 \in A_0$		$x_1 \in A_1$
	$B_0 \subseteq A_0$		$B_1 \subseteq A_1$

 $\begin{array}{c|c} \text{(Simulation)} \ & K[\emptyset, B, \emptyset], \ \textbf{I} \ \text{following} \ \sigma \ (\varepsilon_0 = 1): \\ \hline \textbf{I} & A_0 = B & A_1^1 := \sigma(x_0, 1, A_1^0) & A_2^2 := \sigma(x_0, 1, B_0, x_1, 0, A_2^1) \\ \hline \textbf{II} & x_0 \in A_0 & x_1 \in A_1^1 \\ & \varepsilon_0 = 1 & \varepsilon_1 = 0 \\ & A_1^0 \subseteq A_0 & A_2^1 \subseteq A_1^1 \end{array}$

$$\begin{array}{c|c}
\mathcal{K}[\emptyset, B], \text{ defining } \tau \text{ for } I: \\
\mathbf{I} & A_0 = B & \tau(x_0, B_0) := A_1^1 & \tau(x_0, B_0, x_1, B_1) := A_2^3 \\
\hline
\mathbf{II} & x_0 \in A_0 & x_1 \in A_1 \\
& B_0 \subseteq A_0 & B_1 \subseteq A_1
\end{array}$$

(Sin	nulation) $K[\emptyset, A$	$B, \emptyset]$, I followii	ng σ ($arepsilon_0=1$):	
Ι	$A_0 = B$	$A_1^1 := a$	$\sigma(x_0, 1, A_1^0)$	$A_2^2 := \sigma(x_0, 1, B_0, x_1, 0, A_2^1)$
11	<i>x</i> ₀ €	$\in A_0$	$x_1 \in A_1^1$	
	ε ₀	=1	$\varepsilon_1 = 0$	
	A_1^0	$\subseteq A_0$	$A_2^1\subseteq A_1^1$	

Abstract Ramsey theory •0000000

Abstract Ramsey theory

There were efforts to generalise Ramsey's theory of the reals to other spaces.

Ramsey spaces. Four abstract axioms, **A1**, **A2**, **A3**, **A4**, were developed by Todorčević to capture the Ramsey-theoretic essences of the reals. In particular, $[\mathbb{N}]^{\infty}$ is an example of a Ramsey space satisfying **A1-A4**.

Theorem (Todorčevič)

If (\mathcal{R}, \leq, r) is a closed triple satisfying A1-A4, then every analytic subset of \mathcal{R} is Ramsey.

Abstract Ramsey theory 0000000

In 2023, Cano-Di Prisco proposed an abstract version of the Kastanas game for spaces satisfying these axioms.

Theorem (Cano-Di Prisco, 2023)

If (\mathcal{R}, \leq, r) is a closed triple satisfying **A1-A4**, and \mathcal{R} is selective, then \mathcal{X} is Ramsey iff it is Kastanas Ramsey.

Theorem (Y., 2024)

If (\mathcal{R}, \leq, r) is a closed triple satisfying A1-A4, then \mathcal{X} is Ramsey iff it is Kastanas Ramsey.

Thus, Todorčevič theorem can be translated to "every analytic subset of a Ramsey space is Kastanas Ramsey".

Countable vector spaces. On the other hand, Rosendal studied the Ramsey-theoretic property of *strategically Ramsey subsets* of countable vector spaces. Unlike Todorčevič's framework, countable vector spaces do not satisfy the axioms **A2** (finitisation) and **A4** (pigeonhole).

These sets behave similarly to Ramsey subsets of $[\mathbb{N}]^\infty$ to some extent.

Theorem (Rosendal, 2010)

Let E be a vector space over a countable field of countable dimension. Then every analytic subset of $E^{[\infty]}$ is strategically Ramsey.

Proposition

Let E be a vector space over a countable field of countable dimension. Then $\mathcal{X} \subseteq E^{[\infty]}$ is Kastanas Ramsey iff it is strategically Ramsey.

Thus, Rosendal's theorem can be translated to "every analytic subset of $E^{[\infty]}$ is Kastanas Ramsey".

Question. Is there an overarching theorem that encompasses Todorčevic's theorem and Rosendal's theorem on analytic sets being Kastanas Ramsey. The Kastanas game 0000000

Kastanas game on $[\mathbb{N}]^{\infty} \times 2^{\infty}$

Abstract Ramsey theory 00000000

Weak A2 spaces

Definition

A triple (\mathcal{R}, \leq, r) is a *weak* A2 *space*, or just wA2-*space*, if it is a closed triple satisfying A1, wA2, A3.

Here, the axiom wA2 is a weakened version of A2, which countable vector spaces satisfy. Thus:

- 1. If (\mathcal{R}, \leq, r) is a closed triple satisfying **A1-A4**, it is a **wA2**-space.
- 2. If *E* is a vector space over a countable field, then $E^{[\infty]}$ is a **wA2**-space.

Abstract Ramsey theory 0000000

We can apply Cano-Di Prisco's abstract definition of the Kastanas game to **wA2**-spaces.

Theorem (Y., 2024)

Let (\mathcal{R}, \leq, r) be a wA2-space.

- 1. $(\mathcal{R} \times 2^{\infty}, \preceq, r')$ is also a **wA2**-space, where \preceq and r' are suitably defined.
- 2. If $C \subseteq \mathcal{R} \times 2^{\infty}$ is Kastanas Ramsey, then $\pi_0[C] \subseteq \mathcal{R}$ is Kastanas Ramsey.
- 3. Every analytic subset of \mathcal{R} is Kastanas Ramsey.

Abstract Ramsey theory

Summary

