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Infinite-dimensional Ramsey theory

Infinite-dimensional Ramsey theory started with the study of
infinite subsets of natural numbers, [N]∞. Let’s recall the
definition.

Notation

Given A ∈ [N]∞ and a ∈ [A]<∞, we write:

[a,A] := {B ∈ [A]∞ : a ⊑ B}

where a ⊑ B means that B ∩max(a) = a.

Definition

A subset X ⊆ [N]∞ is Ramsey if for all A ∈ [N]∞ and a ∈ [A]<∞,
there exists some B ∈ [a,A] such that [a,B] ⊆ X c or [a,B] ⊆ X .
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Kastanas (1983) was examining the game-theoretic
characterisation of Ramsey sets.

Definition (Kastanas)

Let A ∈ [N]∞, and let a ∈ [A]<∞. The Kastanas game played
below [a,A], denoted as K [a,A], is:

I A0 = A A1 ⊆ B0 A2 ⊆ B1 · · ·
II x0 ∈ A0 x1 ∈ A1 · · ·

B0 ⊆ A0 B1 ⊆ A1 · · ·

where:

• max(a) < x0 < x1 < · · · .
• An,Bn are infinite subsets of N.

The outcome of the game is a ∪ {x0, x1, . . . } ∈ [a,A].
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Definition

We say that I (similarly II) has a strategy in K [a,A] to reach
X ⊆ [N]∞ if it has a strategy in K [a,A] to ensure rthe outcome is
in X .

Definition

A set X ⊆ [N]∞ is Kastanas Ramsey if for all A ∈ [N]∞ and
a ∈ [A]<∞, there exists some B ∈ [a,A] such that one of the
following holds:

1. I has a strategy in K [a,B] to reach X c .

2. II has a strategy in K [a,B] to reach X .
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Theorem (Kastanas)

A set X ⊆ [N]∞ is Ramsey iff Kastanas Ramsey.
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There are two well-known descriptive set-theoretic facts about
Ramsey subsets of [N]∞.

Theorem (Galvin-Prikry)

Every Borel subset of [N]∞ is Ramsey.

Theorem (Mathias-Silver)

Every analytic subset of [N]∞ is Ramsey.

By the Borel determinacy on Rω, the Galvin-Prikry theorem follows
from Kastanas’ result. However, it is not enough to prove the
Mathias-Silver theorem.
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Goal. Provide a proof of the Mathias-Silver theorem in the
following steps:

1. Define a version of the Kastanas game (and Kastanas Ramsey
sets) on [N]∞ × 2∞. By the Borel determinacy for Polish
spaces, all Borel subsets of [N]∞ × 2∞ are Kastanas Ramsey.

2. Show that Kastanas Ramsey sets are closed under projections.
Therefore, analytic subsets of [N]∞ are Kastanas Ramsey.

3. By Kastanas’ theorem, analytic subsets of [N]∞ are Ramsey.
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Kastanas game on [N]∞ × 2∞

Definition

Let A ∈ [N]∞, and let a ∈ [N]<∞ and p ∈ 2|a|. The Kastanas
game played below [a,A, p], denoted as K [a,A, p], is:

I A0 = A A1 ⊆ B0 · · ·
II x0 ∈ A0 x1 ∈ A1 · · ·

ε0 ∈ {0, 1} ε1 ∈ {0, 1} · · ·
B0 ⊆ A0 B1 ⊆ A1 · · ·

where:

• max(a) < x0 < x1 < · · · .
• An,Bn are infinite subsets of N.

The outcome of the game is
(a ∪ {x0, x1, . . . }, p⌢(ε0, ε1, . . . )) ∈ [a,A]× 2∞.
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Definition

We say that I (similarly II) has a strategy in K [a,A, p] to reach
C ⊆ [N]∞ × 2∞ if it has a strategy in K [a,A, p] to ensure the
outcome is in C.

Definition

A set C ⊆ [N]∞ × 2∞ is Kastanas Ramsey if for all A ∈ [N]∞,
a ∈ [A]<∞ and p ∈ 2|a|, there exists some B ∈ [a,A] such that one
of the following holds:

1. I has a strategy in K [a,B, p] to reach Cc .

2. II has a strategy in K [a,B, p] to reach C.
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Let π0 : [N]∞ × 2∞ → [N]∞ be the projection to the first
coordinate.

Theorem

If C ⊆ [N]∞ × 2∞ is Kastanas Ramsey, then π0[C] ⊆ [N]∞ is
Kastanas Ramsey.
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We split the proof of the theorem into two lemmas.

Lemma

Let C ⊆ [N]∞ × 2∞ be a subset. Let A ∈ [N]∞, a ∈ [A]<∞. If II
has a strategy in K [a,A, p] to reach C for some p ∈ 2lh(a), then II
has a strategy in K [a,A] to reach π0[C].

Proof.

The strategy by II in the game K [a,A, p] to reach C, with the εn’s
ignored, is a strategy for II in K [a,A] to reach π0[C].
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Lemma

Let C ⊆ [N]∞ × 2∞ be a subset. Let A ∈ [N]∞, a ∈ [A]<∞. If for
all p ∈ 2lh(a), there exists some C ∈ [a,A] such that I has a
strategy in K [a,C , p] to reach Cc , then there exists some
B ∈ [a,A] such that I has a strategy in K [a,B] to reach π0[C]c .

Since π0[Cc ] ̸= π0[C]c in general, the same naive argument doesn’t
work here.

In the interest of time, we shall prove this lemma only for a = ∅.
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Proof of the second Lemma

Let B ∈ [A]∞ and σ be a strategy for I in K [∅,B, ∅] (in
[N]∞ × 2∞) to reach Cc . How do we define a strategy τ for I in
K [∅,B] (in [N]∞) to reach π0[C]c?

• Say that the outcome of a complete run in K [∅,B] (in [N]∞),
following τ , is D = {x0, x1, . . . }.

• D /∈ π0[C]c iff for all x ∈ 2∞, (D, x) ∈ Cc .

• Goal. Design τ such that, for any outcome D and any
x ∈ 2∞ (in [N]∞), there is a simulation of the game in
K [∅,B, ∅] (in [N]∞ × 2∞) following σ, such that the outcome
is (D, x). By our choice of σ, (D, x) ∈ Cc .



K [∅,B], defining τ for I:
I A0 = B τ(x0,B0) := A1

1 τ(x0,B0, x1,B1) := A3
2

II x0 ∈ A0 x1 ∈ A1

B0 ⊆ A0 B1 ⊆ A1

(Simulation) K [∅,B, ∅], I following σ:
I A0 = B A0

1 := σ(x0, 0,B0) A1
2 := σ(x0, 0,B0, x1, 1,A

0
2)

II x0 ∈ A0 x1 ∈ A1

ε0 = 0 ε1 = 0
B0 ⊆ A0 B1 ⊆ A1

or

I A0 = B A0
1 := σ(x0, 0,B0) A1

2 := σ(x0, 0,B0, x1, 1,A
0
2)

II x0 ∈ A0 x1 ∈ A1

ε0 = 1 ε1 = 0
B0 ⊆ A0 B1 ⊆ A1
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Abstract Ramsey theory

There were efforts to generalise Ramsey’s theory of the reals to
other spaces.

Ramsey spaces. Four abstract axioms, A1, A2, A3, A4, were
developed by Todorčević to capture the Ramsey-theoretic essences
of the reals. In particular, [N]∞ is an example of a Ramsey space
satisfying A1-A4.

Theorem (Todorčevic̀)

If (R,≤, r) is a closed triple satisfying A1-A4, then every analytic
subset of R is Ramsey.
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In 2023, Cano-Di Prisco proposed an abstract version of the
Kastanas game for spaces satisfying these axioms.

Theorem (Cano-Di Prisco, 2023)

If (R,≤, r) is a closed triple satisfying A1-A4, and R is selective,
then X is Ramsey iff it is Kastanas Ramsey.

Theorem (Y., 2024)

If (R,≤, r) is a closed triple satisfying A1-A4, then X is Ramsey
iff it is Kastanas Ramsey.

Thus, Todorčevic̀ theorem can be translated to “every analytic
subset of a Ramsey space is Kastanas Ramsey”.
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Countable vector spaces. On the other hand, Rosendal studied
the Ramsey-theoretic property of strategically Ramsey subsets of
countable vector spaces. Unlike Todorčevic̀’s framework, countable
vector spaces do not satisfy the axioms A2 (finitisation) and A4
(pigeonhole).
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These sets behave similarly to Ramsey subsets of [N]∞ to some
extent.

Theorem (Rosendal, 2010)

Let E be a vector space over a countable field of countable
dimension. Then every analytic subset of E [∞] is strategically
Ramsey.
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Proposition

Let E be a vector space over a countable field of countable
dimension. Then X ⊆ E [∞] is Kastanas Ramsey iff it is
strategically Ramsey.

Thus, Rosendal’s theorem can be translated to “every analytic
subset of E [∞] is Kastanas Ramsey”.

Question. Is there an overarching theorem that encompasses
Todorčevic’s theorem and Rosendal’s theorem on analytic sets
being Kastanas Ramsey.
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Weak A2 spaces

Definition

A triple (R,≤, r) is a weak A2 space, or just wA2-space, if it is a
closed triple satisfying A1, wA2, A3.

Here, the axiom wA2 is a weakened version of A2, which
countable vector spaces satisfy. Thus:

1. If (R,≤, r) is a closed triple satisfying A1-A4, it is a
wA2-space.

2. If E is a vector space over a countable field, then E [∞] is a
wA2-space.
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We can apply Cano-Di Prisco’s abstract definition of the Kastanas
game to wA2-spaces.

Theorem (Y., 2024)

Let (R,≤, r) be a wA2-space.

1. (R× 2∞,⪯, r ′) is also a wA2-space, where ⪯ and r ′ are
suitably defined.

2. If C ⊆ R× 2∞ is Kastanas Ramsey, then π0[C] ⊆ R is
Kastanas Ramsey.

3. Every analytic subset of R is Kastanas Ramsey.
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Summary

wA2-space

(R,≤, r)
satisfies A1-A4

Countable
vector space

is is

Analytic =⇒
strategically Ramsey

+
Kastanas Ramsey

iff strategically Ramsey

Analytic =⇒
Kastanas Ramsey

Analytic =⇒
Ramsey

+
Kastanas Ramsey

iff Ramsey

[N]∞

example
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