MAT337 Introduction to Real Analaysis - Fall 2025 Week 6 Tutorial

This tutorial focuses on closed and open subsets of \mathbb{R}^n , and the compactness property. Feel free to ask me any questions about this document in person.

Definition. Let $A \subseteq \mathbb{R}^n$.

- (1) A point \vec{x} is a **limit point** of A is there exists a sequence $(\vec{a}_k)_{k=1}^{\infty}$, with $\vec{a}_k \in A$ for all k, such that $\vec{x} = \lim_{k \to \infty} \vec{a}_k$.
- (2) A is **closed** if it contains all of its limit points.

Problem 4.3.A.

Find the closure of the following sets:

- (a) Q.
- (b) $\{(x,y) \in \mathbb{R}^2 : xy < 1\}.$
- (c) $\{(x, \sin(\frac{1}{x})) : x > 0\}.$
- (d) $\{(x,y) \in \mathbb{Q}^2 : x^2 + y^2 < 1\}.$

Solution

- (a) The closure is \mathbb{R} , as every real number is a limit of a sequence of rational numbers (see Problem 2.5.G).
- (b) The closure is $\{(x,y) \in \mathbb{R}^2 : xy \le 1\}$.

Suppose that $(x_k, y_k)_{k=1}^{\infty}$ is a sequence in the set, and $\lim_{k\to\infty} (x_k, y_k) = (x, y)$. We need to show that $xy \leq 1$. It suffices to show that for all $\varepsilon \in (0, 1)$ (i.e. $0 < \varepsilon < 1$), $xy < 1 + \varepsilon$. Let k be large enough so that $||(x_k, y_k) - (x, y)|| < 0$

 $\frac{\varepsilon}{|x|+|y|+1}$. Then:

$$xy = (xy - x_k y_k) + x_k y_k$$

$$< |xy - x_k y_k| + 1$$

$$\le |xy - x_k y| + |x_k y - x_k y_k| + 1$$

$$= |y||x - x_k| + |x_k||y - y_k| + 1$$

$$\le |y||x - x_k| + (|x_k - x| + |x|)|y - y_k| + 1$$

$$< |y| \frac{\varepsilon}{|x| + |y| + 1} + (\varepsilon + |x|) \frac{\varepsilon}{|x| + |y| + 1} + 1$$

$$= \frac{|x| + |y| + \varepsilon}{|x| + |y| + 1} \varepsilon + 1$$

$$< \varepsilon + 1.$$

Conversely, suppose that $(x,y) \in \mathbb{R}^2$ is such that $xy \leq 1$. We need to find some sequence $(x_k,y_k)_{k=1}^{\infty}$ such that $x_ky_k < 1$ for all k, and $\lim_{k\to\infty}(x_k,y_k) = (x,y)$. If xy < 1, then we may let $(x_k,y_k) = (x,y)$ for all k. Otherwise, xy = 1, so in particular we have that $x \neq 0$. We consider two cases.

- (i) If x > 0 (so y > 0 as well), then for each k we let $x_k = x \frac{1}{k}$ and $y_k = y$. It's not hard to see that $\lim_{k \to \infty} (x_k, y_k) = (x, y)$, and for each k, $x_k y_k < xy = 1$.
- (ii) **Exercise.** Find the sequence in the case where x < 0 (so y < 0 as well).
- (c) The closure is $\{(x, \sin(\frac{1}{x})) : x > 0\} \cup \{(0, y) : -1 \le y \le 1\}$. Suppose that $(x_k, y_k)_{k=1}^{\infty}$ is a sequence in the set, and $\lim_{k\to\infty} (x_k, y_k) = (x, y)$. We need to show that either x > 0 and $y = \sin(\frac{1}{x})$, or x = 0 and $-1 \le y \le 1$.
 - (i) Suppose that x > 0. Let $\varepsilon > 0$. Since $\lim_{k \to \infty} x_k = x$, we have that $\lim_{k \to \infty} \frac{1}{x_k} = \frac{1}{x}$, so there exists some k such that $\left|\frac{1}{x_k} \frac{1}{x}\right| < \varepsilon$. We shall use the trigonometric identity:

$$\sin(A) - \sin(B) = 2\sin\left(\frac{A-B}{2}\right)\cos\left(\frac{A+B}{2}\right),$$

and the inequality $\sin(x) \le x$ for all $x \ge 0$. then:

$$\left| \sin\left(\frac{1}{x}\right) - \sin\left(\frac{1}{x_k}\right) \right| = \left| 2\sin\left(\frac{1}{2}\left(\frac{1}{x} - \frac{1}{x_k}\right)\right) \cos\left(\frac{1}{2}\left(\frac{1}{x} + \frac{1}{x_k}\right)\right) \right|$$

$$= 2 \cdot \left| \sin\left(\frac{1}{2}\left(\frac{1}{x} - \frac{1}{x_k}\right)\right) \right| \cdot \left| \cos\left(\frac{1}{2}\left(\frac{1}{x} + \frac{1}{x_k}\right)\right) \right|$$

$$\leq 2 \cdot \left| \frac{1}{2}\left(\frac{1}{x} - \frac{1}{x_k}\right) \right| \cdot 1$$

$$= \left| \frac{1}{x_k} - \frac{1}{x} \right|$$

$$< \varepsilon$$

(ii) If x = 0, then since $|y_k| = |\sin(\frac{1}{x_k})| \le 1$ for all k, by the squeeze theorem we have that $|y| \le 1$ as well.

Now suppose that $(0,y) \in \mathbb{R}^2$ and $-1 \leq y \leq 1$. We need to find some sequence $(x_k,y_j)_{k=1}^{\infty}$ such that $y_k = \sin(\frac{1}{x_k})$, and $\lim_{k\to\infty}(x_k,y_k) = (0,y)$. Since $-1 \leq y \leq 1$, there exists some $0 < d \leq 2\pi$ such that $y = \sin(d)$. Let $x_k = \frac{1}{2k\pi+d}$. Then $\lim_{k\to\infty} x_k = 0$ as $\lim_{k\to\infty} (2k\pi+d) = +\infty$, and for all k:

$$y_k = \sin\left(\frac{1}{\frac{1}{2k\pi + d}}\right) = \sin(2k\pi + d) = \sin(d) = y,$$

so $(y_k)_{k=1}^{\infty}$ is the constant sequence where every term is y.

(d) The closure is $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$.

Exercise. Solve Problem 4.3.A(d).

Remarks/Takeaways.

- (1) It's crucial for one to develop the skill to quickly see what the closure of a set is. Finding the closure of a set amounts to finding the "boundary" of a set.
 - (b) For Q4.3.A(b), the set looks like this:

The dotted line (i.e. the set $\{(x,y) \in \mathbb{R}^2 : xy = 1\}$) is not part of the set, but it's a "boundary" of it. Therefore, the dotted line is included in the closure.

(c) For Q4.3.A(c), the set looks like this:

Again, dotted line (i.e. the set $\{(0,y): -1 \le y \le 1\}$) is not part of the set, but the points in the set "gets closer and closer" to the dotted line, so it's included in the closure.

(2) If a set has the strict inequality <, the closure likely has the equality replaced with \leq (see (b), (c) and (d)).

Problem 4.3.B.

Let $(\vec{a}_k)_{k=1}^{\infty}$ be a sequence in \mathbb{R}^n with $\lim_{k\to\infty} \vec{a}_k = \vec{a}$. Show that $\{\vec{a}_k : k \geq 1\} \cup \{\vec{a}\}$ is closed.

Solution

Let $A := \{\vec{a}_k : k \geq 1\} \cup \{\vec{a}\}$, and let \vec{x} be a limit point of A. We need to show that $\vec{x} \in A$. Let $(\vec{b}_l)_{l=1}^{\infty}$ be a sequence, with $\vec{b}_l \in A$ for all l, such that $\lim_{l \to \infty} \vec{b}_l = \vec{x}$. We consider two cases.

- (1a) Suppose that there are infinitely many l such that $\vec{b}_l = \vec{a}$. Let $(\vec{b}_{l_m})_{m=1}^{\infty}$ be a subsequence (i.e. $l_1 < l_2 < \cdots$) such that $\vec{b}_{l_m} = \vec{a}$ for all m. Then $\lim_{m\to\infty} \vec{b}_{l_m} = \vec{a}$. But since $\lim_{l\to\infty} \vec{b}_l = \vec{x}$, every subsequence of $(\vec{b}_l)_{l=1}^{\infty}$ also converges to \vec{x} , so $\vec{x} = \vec{a} \in A$.
- (1b) Suppose that there is some k such that there are infinitely many l in which $\vec{b}_l = \vec{a}_k$. By a similar argument to Case (1a), we have that $\vec{x} = \vec{a}_k \in A$.
- (2) Suppose that neither (1a) nor (1b) are true. We define a subsequence $(\vec{b}_{l_m})_{m=1}^{\infty}$ inductively as follows: Let \vec{b}_{l_0} be any term such that $\vec{b}_{l_0} = \vec{a}_{k_0}$ for some k_0 . Suppose that \vec{b}_{l_m} has been defined and $\vec{b}_{l_m} = \vec{a}_{k_m}$ for some k_m .

Exercise. Show that there exists some $l_{m+1} > l_m$ such that $\vec{b}_{l_{m+1}} = \vec{a}_{k_{m+1}}$ for some $k_{m+1} > k_m$.

Then $(\vec{b}_{l_m})_{m=1}^{\infty} = (\vec{a}_{k_m})_{m=1}^{\infty}$ is a subsequence of $(\vec{a}_k)_{k=1}^{\infty}$, and since $\lim_{k\to\infty} \vec{a}_k = \vec{a}$, we have that $\lim_{m\to\infty} \vec{a}_{k_m} = \vec{a}$ as well. Therefore, $\vec{x} = \vec{a} \in A$.

Remarks/Takeaways.

- (1) If the question asks you to show that a set is closed, proving it by definition is a common approach.
- (2) Do not conclude hastily that $(\vec{b}_l)_{l=1}^{\infty}$ is a subsequence of $(\vec{a}_k)_{k=1}^{\infty}$, as it may not be.

Problem 4.4.I.

Let A and B be disjoint closed subsets of \mathbb{R}^n . Define:

$$d(A, B) := \inf\{\|\vec{a} - \vec{b}\| : \vec{a} \in A, \vec{b} \in B\}.$$

Remark.

(1) d(A, B) may be viewed as the shortest distance needed to travel between two closed sets (but not always! See 4.4.I(c)). Here's a picture:

4.4.I(a).

If \vec{a} is a singleton, show that d(A, B) > 0.

Solution

We shall show that if $d(\{\vec{a}\}, B) = 0$, then $\vec{a} \in B$, contradicting that A and B are disjoint. Since B is closed, it suffices to show that \vec{a} is a limit point of B. That is, there exists a sequence $(\vec{a}_k)_{k=1}^{\infty}$ in B such that $\lim_{k\to\infty} \vec{a}_k = \vec{a}$.

Since $d(\{\vec{a}\}, B) = 0$, for all $\varepsilon > 0$ there exists some $\vec{b} \in B$ such that $\|\vec{a} - \vec{b}\| < \varepsilon$. In particular, for any k there exists some $\vec{a}_k \in B$ such that $\|\vec{a}_k - \vec{a}\| < \frac{1}{k}$. Then $0 \le \|\vec{a}_k - \vec{a}\| < \frac{1}{k}$ for all k, so by the squeeze theorem, we have that $\lim_{k \to \infty} \|\vec{a}_k - \vec{a}\| = 0$, i.e. $\lim_{k \to \infty} \vec{a}_k = \vec{a}$.

Remarks/Takeaways.

- (1) This is not the first time you see us taking a sequence (or subsequence) in which each $\|\vec{a}_k \vec{a}\|$ is bounded by some other sequence which converges to zero. This is a useful technique which will appear from time to time.
- (2) The statement is false if we do not assume that B is closed that is, it is possible that $d(\vec{a}, B) = 0$ and $\vec{a} \notin B$ if B is not closed. Here is an example:

Equations:

(a)
$$A = \{(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})\}.$$

(b)
$$B = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}.$$

4.4.I(b).

If A is compact, show that d(A, B) > 0.

Definition. Let $A \subseteq \mathbb{R}^n$. A is **compact** if for every sequence $(\vec{a}_k)_{k=1}^{\infty}$ of points in A, there exists a convergent subsequence $(\vec{a}_{k_i})_{i=1}^{\infty}$ with $\lim_{i\to\infty} \vec{a}_{k_i} = \vec{a} \in A$.

Solution

Exercise. Show that $d(A, B) = \inf\{d(\{\vec{a}\}, B) : \vec{a} \in A\}$. If you need a hint, see the Remarks/Takeaways after the solution.

We shall show that if d(A, B) = 0, then A is not compact. Since $\inf\{d(\{\vec{a}\}, B) : \vec{a} \in A\} = 0$, for any k there exists some $\vec{a}_k \in B$ such that $d(\{\vec{a}_k\}, B) < \frac{1}{k}$. Then $(\vec{a}_k)_{k=1}^{\infty}$, and since A is compact, there exists a convergent subsequence $(\vec{a}_{k_i})_{i=1}^{\infty}$ with $\lim_{i \to \infty} \vec{a}_{k_i} = \vec{a} \in A$. We shall show that $d(\vec{a}, B) = 0$, contradicting Problem 4.4.I(a).

It suffices to show that $d(\vec{a}, B) < \varepsilon$ for all $\varepsilon > 0$. Fix any $\varepsilon > 0$. Since $\lim_{i \to \infty} \vec{a}_{k_i} = \vec{a}$, there exists some k_i large enough such that $\frac{1}{k_i} < \frac{\varepsilon}{2}$, and $||\vec{a} - \vec{a}_{k_i}|| < \frac{\varepsilon}{2}$. Then for

all $\vec{b} \in B$:

$$\|\vec{a} - \vec{b}\| \le \|\vec{a} - \vec{a}_{k_i}\| + \|\vec{a}_{k_i} - \vec{b}\|$$

 $< \frac{\varepsilon}{2} + \|\vec{a}_{k_i} - \vec{b}\|.$

Taking infimum across $\vec{b} \in B$, we have that:

$$d(\{\vec{a}\}, B) = \inf\{\|\vec{a} - \vec{b}\| : \vec{b} \in B\}$$

$$< \frac{\varepsilon}{2} + \inf\{\|\vec{a}_{k_i} - \vec{b}\| : \vec{b} \in B\}$$

$$= \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

Therefore, $d(\vec{a}, B) < \varepsilon$. Since ε is arbitrary, we have that $d(\vec{a}, B) = 0$.

Remarks/Takeaways.

- (1) The exercise at the beginning of the solution is an excellent practice in proving equalities by showing one is bounded by the other, and vice versa.
 - (a) Show that for all $\vec{a} \in A$, $d(A, B) \leq d(\{\vec{a}\}, B)$. By taking infimum across $\vec{a} \in A$, you may conclude that $d(A, B) \leq \inf\{d(\{\vec{a}\}, B) : \vec{a} \in A\}$.
 - (b) Show that for all $\varepsilon > 0$, there exists some $\vec{a} \in A$ such that $d(\{\vec{a}\}, B) \le d(A, B) + \varepsilon$. Explain why this implies that $\inf\{d(\{\vec{a}\}, B) : \vec{a} \in A\} \le d(A, B)$.

4.4.I(c).

Find an example of two disjoint closed sets in \mathbb{R}^2 with d(A, B) = 0.

Solution

Consider the following two sets:

(1)
$$A = \{(x, y) \in \mathbb{R}^2 : x > 0 \text{ and } y = \frac{1}{x}\}.$$

(2)
$$B = \{(x, y) \in \mathbb{R}^2 : x > 0 \text{ and } y = -\frac{1}{x}\}.$$

In other words, A and B are the graphs of the functions $y = \frac{1}{x}$ and $y = -\frac{1}{x}$ respectively. Here's a picture:

We need to show that A and B are closed, and d(A, B) = 0.

We first show that A is closed. Let $(a,b) \in \mathbb{R}^2$ be a limit point of A, i.e. there exists some sequence $((x_k,y_k))_{k=1}^{\infty}$ in A such that $\lim_{k\to\infty}(x_k,y_k)=(a,b)$. This implies that $\lim_{k\to\infty}x_k=a$ and $\lim_{k\to\infty}y_k=b$. Since $y_k=\frac{1}{x_k}$, we have that $b=\lim_{k\to\infty}\frac{1}{x_k}=\frac{1}{a}$, so $(a,b)=(a,\frac{1}{a})\in A$.

Exercise. Using the idea in the above paragraph, convince yourself that B is also closed.

We now show that d(A,B)=0. It suffices to show that for all $\varepsilon>0$, $d(A,B)<\varepsilon$. For each $\varepsilon>0$, let $x>\frac{2}{\varepsilon}$ be any number large enough. Then $(x,\frac{1}{x})\in A$ and $(x,-\frac{1}{x})\in B$, and:

$$\left\| \left(x, \frac{1}{x} \right) - \left(x, -\frac{1}{x} \right) \right\| = \left\| \left(0, \frac{2}{x} \right) \right\|$$
$$= \frac{2}{x}$$
$$< \varepsilon.$$

Therefore, $d(A, B) \le \left\| \left(x, \frac{1}{x} \right) - \left(x, -\frac{1}{x} \right) \right\| < \varepsilon$.

Remarks/Takeaways.

- (1) Recall by the Heine-Borel theorem that a set is compact iff it is closed and bounded. A and B are examples of sets which are closed but unbounded.
- (2) If you try to repeat the proof of Problem 4.4.I(b) with A and B, the sequence $(\vec{a}_k)_{k=1}^{\infty}$ does not have a convergent subsequence as the x-coordinate of \vec{a}_k tends to

infinity. If the set is compact, the boundedness property prevents the coordinates from "escaping" to infinity, thus guaranteeing us a convergent subsequence.