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Large Cardinals

Definition

A cardinal κ is regular if cf(κ) = κ.

Definition

A cardinal κ is:

(1) weakly inaccessible if κ is a regular limit cardinal.

(2) strongly inaccessible if κ is a regular strong limit cardinal, i.e.
λ < κ → 2λ < κ.
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Recall that the Von Neumann universe V is constructed recursivley
as follows:

V0 := ∅.
Vα+1 := P(Vα).

If α limit, Vα :=
⋃

β<α Vβ.

V :=
⋃

α∈ORD Vα.

Theorem

If κ is strongly inaccessible, then Vκ is a model of ZFC.
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By Gödel’s incompleteness theorem, the existence of strongly
inaccessible cardinals is unprovable in ZFC. This makes strongly
inaccessible cardinals a form of large cardinal.

Vaguely speaking, a large cardinal is a cardinal with combinatorial
properties so strong that its existence is unprovable in ZFC.
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Measurable Cardinals

Definition

Let U be an ultrafilter, and let κ be a cardinal. U is κ-complete if
it is closed under λ-intersections for all λ < κ. In other words, for
all λ < κ and {Xα : α < λ} ⊆ U ,

⋂
α<λ Xα ∈ U .

Definition

A cardinal κ is measurable if there exists a κ-complete
non-principal ultrafilter U on κ.



Background: Set Theory Descriptive Set Theory Determinacy

A non-principal ultrafilter is also called a measure, as a
non-principal ultrafilter U on κ induces a non-trivial measure µ on
κ by:

µ(X ) :=

{
1, if X ∈ U
0, if X /∈ U

See §10 of Jech for more about the relationship between
measurable cardinals and the measure problem.
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Lemma

If κ is measurable, it is strongly inaccessible.

Proof.

Regular: Suppose cf(κ) = λ < κ. Let {κα : α < λ} be cofinal in κ.
Since U is κ-complete non-principal, κ \ κα ∈ U for all α. Then
∅ =

⋂
α<λ(κ \ κα) ∈ U , a contradiction.

Strong Limit: Suppose λ < κ and 2λ ≥ κ. Let S be a set of
functions f : λ → {0, 1} with |S | = κ. For each α < λ, let Xα be
the set {f ∈ S : f (α) = 0} or {f ∈ S : f (α) = 1} that is in U , and
let εα ∈ {0, 1} be the respective value. Then X :=

⋂
α<λ Xα ∈ U .

But X only contains the function f (α) = εα.
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How “strong” a large cardinal is is measured by its consistency
strength.

Since measurable cardinals are strongly inaccessible, we have:

Con(ZFC + ∃ a measurable cardinal)

↓
Con(ZFC + ∃ a strongly inaccessible cardinal)

So a measurable cardinal has a higher consistency strength than a
strongly inaccessible cardinal.
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Constructible Universe

Definition

Let M be a set. A set X is definable over (M,∈) if there exists a
formula φ and a1, . . . , an ∈ M such that:

X = {x ∈ M : (M,∈) |= φ[x , a1, . . . , an]}

Definition

The definable power set, def(M), is defined as:

def(M) := {X ⊆ M : X is definable over (M,∈)}
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Von Neumann Universe, V :

V0 := ∅.
Vα+1 := P(Vα).

If α limit, Vα :=
⋃

β<α Vβ.

V :=
⋃

α∈ORD Vα.

Constructible Universe, L:

L0 := ∅.
Lα+1 := def(Lα).

If α limit, Lα :=
⋃

β<α Lβ.

L :=
⋃

α∈ORD Lα.

Definition

A set x is constructible if x ∈ L.
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Theorem

L is a model of ZFC.

Definition

The statement “V = L” abbreviates the statement “every set is
constructible”.

Theorem

(1) L |= “V = L”.

(2) L |= GCH. Thus, if V ̸|= GCH, V ̸= L.
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Projective Hierarchy

Let ωω denote the space of countable sequences of natural
numbers. These sequences are also called reals.

Definition

Let A ⊆ ωω.

(1) A is Σ1
1 if there exists a recursive relation R such that:

x ∈ A ⇐⇒ ∃y ∈ ωω ∀n ∈ ω R(x↾n, y↾n)

(2) A is Σ1
1(a), where a ∈ ωω, if there exists a recursive relation R

such that:

x ∈ A ⇐⇒ ∃y ∈ ωω ∀n ∈ ω R(x↾n, y↾n, a↾n)



Background: Set Theory Descriptive Set Theory Determinacy

Definition

Let A ⊆ ωω.

(1) A is Π1
n (in a) if ωω \ A is Σ1

n.

(2) A is Σ1
n+1 (in a) if there exists some Π1

n (in a) set B ⊆ ωω×ωω

such that:

x ∈ A ⇐⇒ ∃y ∈ ωω (x , y) ∈ B

(3) A is ∆1
n if A is both Σ1

n and Π1
n.

Definition

Σ1
n :=

⋃
a∈ωω

Σ1
1(a), Π1

n :=
⋃

a∈ωω

Π1
1(a)
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Replacing ωω with
∏

i<n ω
ω for some n, we may instead consider a

hierarchy of relations instead of sets of reals.

Lemma

(1) If A, B are Σ1
n(a), then so are ∃x A, A ∧ B, A ∨ B.

(2) If A, B are Π1
n(a), then so are ∀x A, A ∧ B, A ∨ B.

(3) If A is Σ1
n(a), then ¬A is Π1

n(a). If A is Π1
n(a), then ¬A is

Σ1
n(a).

See also Lemma 25.2, Jech.
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Π1
1 Normal Form

The normal form theorem allows us to express Π1
1 in terms of trees.

This expression is very useful in proving absoluteness results about
sets in the projective hierarchy.

By a tree we refer to a subset T ⊆ ω<ω, ordered by initial segment
⊑, that is closed under initial segments - i.e. if t ∈ T , then
t↾n ∈ T for all n ≤ |t|.

We also use [T ] to denote the set of branches of T , i.e.:

[T ] := {x ∈ ωω : x↾n ∈ T for all n}
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Let Seqr denote the set of r -tuples (s1, . . . , sr ), where si ∈ ω<ω,
such that |s1| = · · · = |sr |.

Definition

An (r -dimensional) sequential tree is a subset T ⊆ Seqr that is
closed under initial segments - i.e. if (s1, . . . , sr ) ∈ T , then for all
n ≤ |si |, (s1↾n, . . . , sr ↾n) ∈ T .

Definition

A sequential tree is well-founded if it has no infinite branch. That
is, the set:

[T ] := {(x1, . . . , xr ) ∈ (ωω)r : ∀n (x1↾n, . . . , xr ↾n) ∈ T}

is empty.
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If T is an (r + 1)-dimensional sequential tree, then:

T (x) := {(s1, . . . , sr ) ∈ Seqr : (x↾|si |, s1, . . . , sr ) ∈ T}

Definition

A sequential tree T is recursive if the map x 7→ T (x) is recursive.
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Theorem (Normal Form for Π1
1 Sets)

Let A ⊆ ωω. Then A is Π1
1 iff there exists a recursive T ⊆ Seq2

such that:

x ∈ A ⇐⇒ T (x) is well-founded
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This follows from the observation that a recursive relation R
defining a Σ1

1 set is a subset of Seq2. However, R need not be
closed under initial segments, so a small modification is necessary
for one direction.
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Proof.

It suffices to show that if A ⊆ ωω is Σ1
1, then there exists a

recursive T ⊆ Seq2 such that:

x ∈ A ⇐⇒ T (x) is ill-founded

⇐= : If T is one such sequential tree, then:

x ∈ A ⇐⇒ T (x) is ill-founded

⇐⇒ ∃y ∈ ωω y ∈ [T (x)]

⇐⇒ ∃y ∈ ωω ∀n T (x↾n, y↾n)

Since T is recursive, A is Σ1
1.
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Proof (Cont.)

=⇒ : Suppose R is a recursive relation and:

x ∈ A ⇐⇒ ∃y ∈ ωω ∀n R(x↾n, y↾n)

Define a sequential tree T ⊆ Seq2 by:

T := {(s, t) ∈ Seq2 : ∀n ≤ |s|R(s↾n, t↾n)}

Clearly T is indeed closed under initial segments. Then:

x ∈ A ⇐⇒ (x , y) ∈ [T ] for some y ∈ ωω

⇐⇒ y ∈ [T (x)] for some y ∈ ωω

⇐⇒ [T (x)] is ill-founded
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As mentioned earlier, the power of the normal forms stems from its
ability to prove absoluteness results.

Theorem (Mostowki’s Absoluteness)

If P is a Σ1
1 property, then P is absolute for every transitive model

that is adequate for P.
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Proof.

Suppose P is Σ1
1(a). Here “adequate” means that the model

(M,∈) satisfies a sufficiently large enough fragment of ZFC for
well-founded trees to have a rank function, and that a ∈ M.
Let T ∈ M such that P = {x ∈ ωω : T (x) is ill-founded}. Fix
some x ∈ ωω, and we wish to show that M |= P(x) iff P(x).

(1) If M |= (T (x) is ill-founded ), then M |= ∃y ∈ ωω ∈ [T (x)].
This is a Σ1 formula, which is upward-absolute.

(2) If M |= (T (x) is well-founded ), then M |= ∃f : T (x) → ORD
such that s ⊑ t → f (t) < f (s). This is again a Σ1 formula,
which is upward-absolute.
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Stronger absoluteness results can be proven using deeper set
theory which uses normal form.

Theorem (Shoenfield’s Absoluteness)

If P is a Σ1
2(a) property, then it is absolute for all inner models M

of ZF + DC such that a ∈ M.
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Infinite Games

We consider games played by two players, in which each player
take turn picking some element of ω. The players take turns
infinitely many times.

To formalise this: Let A ⊆ ωω. We use GA to denote the following
two-player game:

Player I starts by picking a0 ∈ ω.

Player II then picks b0 ∈ ω.

Player I then picks a1 ∈ ω.

Player II then picks b1 ∈ ω.

. . .

Player I wins iff by the end of the game, (a0, b0, a1, b1, . . . ) ∈ A.
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A winning strategy for Player I (Player II) is a strategy σ such that
as long as Player I (Player II) follows this strategy, Player I (Player
II) is guaranteed to win the game.

More precisely, a winning strategy for Player I is a function σ such
that:

σ(∅) = a0

σ(a0, b0) = a1

σ(a0, b0, a1, b1) = a2
...

Note that the number a1 depends on a0, b0, a2 depends on
a0, b0, a1, b1 etc. Then (a0, b0, a1, b1, . . . ) ∈ A for any sequence
(b0, b1, . . . ).
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Example

Let:

A :=

{
x ∈ ωω :

{
1

x(n) + 1

}
n<ω

converges to some real number

}
Then Player II has a winning strategy as follows:

(1) If Player I plays an = 0, then Player II plays bn = 1.

(2) If Player I plays an > 0, then Player II plays bn = 0.

The sequence 1
a0+1 ,

1
b0+1 ,

1
a1+1 ,

1
b1+1 has infinitely many 1s, so for

it to converge it must be eventually 1, which is impossible by
Player II’s strategy.
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We say that a game is determined if either Player I or II has a
strategy.

Theorem

All open games are determined. That is, if A ⊆ ωω is open, then
GA is determined.

Note that we are equipping ωω with the usual topology
{O(s) : s ∈ ω<ω}, where:

O(s) := {x ∈ ωω : s ⊑ x}
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Proof.

Let A ⊆ ωω be open. If Player I has a winning strategy, then we’re
done, so assume otherwise. Player II shall play as follows:

(1) Player I starts by picking any a0 ∈ ω.

(2) Since Player I has no winning strategy, Player II has not lost,
so, in particular, there exists some b0 ∈ ω such that Player II
has not lost after the play (a0, b0).

(3) Player I plays any a1 ∈ ω.

(4) Player II chooses some b1 ∈ ω such that Player II has not lost
after the play (a0, b0, a1, b1).

(5) . . . .

Suppose x := (a0, b0, a1, b1, . . . ) ∈ A. Since A is open, there exists
some s = (a0, b0, . . . , an) ⊑ x such that O(s) ⊆ A. But that would
mean that II has already lost by the time Player I plays an.
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In fact, more is true:

Theorem (Martin)

All Borel games are determined.

For now, we do not have plans to prove this.
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Borel determinacy is the “strongest” ZFC determinacy theorem
available. The next natural determinacy would be analytic
determinacy, which is equivalent to the existence of 0♯. A
measurable cardinal implies the existence of 0♯. Thus, Con(ZFC+∃
a measurable cardinal ) → Con(ZFC+ Analytic determinacy).
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