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Axiom of Determinacy

Definition

The Axiom of Determinacy, also written as AD, asserts that the
game GA is determined for all A ⊆ ωω.
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Lemma

If AC holds, then GA is not determined for some A ⊆ ωω. Hence,
AD is incompatible with AC.

Given x = (b0, b1, . . . ) and a strategy σ for Player I, we denotet

σ ∗ x := (σ(∅), b0, σ(σ(∅), b0), b1, . . . )
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Proof.

We first note that each strategy is a function from ω<ω to ω, so
each player has at most 2ℵ0 many strategies for games of the form
GA. It’s easy to construct 2ℵ0 many strategies for each player.
Also, observe that the map x 7→ σ ∗ x is injective, so for each σ the
set {σ ∗ x : x ∈ ωω} has size 2ℵ0 .
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Proof (Cont.)

Let {σα : α < 2ℵ0} and {τα : α < 2ℵ0} enumerate all strategies.
Define X = {xα : α < 2ℵ0},Y = {yα : α < 2ℵ0} ⊆ ωω as follows:

(1) Suppose {xξ : ξ < α} has been defined. Choose yα /∈ {xξ : ξ <
α} such that yα = σα ∗ z for some z ∈ ωω.

(2) Suppose {yξ : ξ ≤ α} has been defined. Choose xα /∈ {yξ : ξ ≤
α} such that xα = τα ∗ z for some z ∈ ωω.

Clearly X and Y are disjoint, and no strategy for either player
works: If Player I chooses strategy σ, then by construction Player
II can play some sequence z ∈ ωω such that σ ∗ z /∈ X , (and
similarly for Player II.
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However, AD implies that countable choice for real numbers holds.

Lemma

AD implies that every countable set of non-empty subsets of ωω

has a choice function.
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Proof.

Let {Xn : n < ω} be a family of non-empty subsets of ωω. Define:

A := {x = (a0, b0, a1, b1, . . . ) ∈ ωω : (b0, b1, . . . ) /∈ Xa0}

Consider the game GA. Clearly Player I does not have a winning
strategy, for if Player I plays a0, then Player II may choose any
(b0, b1, . . . ) ∈ Xa0 and plays it. By AD, Player II has a winning
strategy τ . A choice function would thus be:

f (Xn) := τ ∗ (n, 0, 0, . . . )
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An important consequence of this fact is that:

Corollary

AD implies that ω1 is regular.

Note that ZF + “ω1 is singular” is indeed consistent (if ZFC is
consistent).
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A few concluding remarks on AD:

(1) AD is essentially a large cardinal axiom. In fact, a result of
Woodin says that ZF + AD is equiconsistent with ZFC + ω
many Woodin cardinals.

(2) AD is compatible with dependent choice (DC). However, I
cannot find any resources on whether it’s known that
AD → DC.
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Recursive Trees

Recall that a tree is a subset T ⊆ ω<ω closed under initial
segments.

Recall also that if T is a tree, then a rank function f : T → ORD
is a function such that:

s ⊑ t =⇒ f (t) < f (s)

We have proved via hand-waving that every well-founded tree has
a rank function.
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Definition

Let T be a tree. The height of T , denoted by ∥T∥, is:

∥T∥ := min{f (∅) : f : T → ORD is a rank function}

See Example 1.14 of Recursive Aspects of Descriptive Set Theory,
Mansfield-Weitkamp for some examples.



Determinacy (Cont.) Martin’s Cone Theorem AD and Measurability

Lemma

For all α < ω1, there exists a tree T such that ∥T∥ = α.

Sketch of Proof.

This lemma is hard to prove without pictures, so I shall just include
a rough explanation of how to prove this lemma. We induct on α.

(1) If α = 0, the tree T = {∅} works.

(2) Suppose α = β + 1. Let T be a tree such that ∥T∥ = β.
Append a node above the root of the tree, and the new tree
has height α.

(3) Suppose α = supn<ω αn is a limit ordinal. Let Tn be a tree
with height αn. Start with a root with infinitely many branches.
Append each Tn to one of these branches. The new tree has
height α.
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Definition

Let x ∈ ωω. We define:

ωx
1 := sup{∥T∥ : T is a tree recursive in x}

Since ∥T∥ < ω1 for all T , and there are only countably many trees
recursive in x , we have that ωx

1 < ω1 as long as ω1 is regular.
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Clearly if x ≡T y , then ωx
1 = ωy

1 . Thus, if Γ is the set of Turing
degrees, then:

CK : Γ → ω1, CK([x ]) := ωx
1

is a well-defined function (as long as ω1 is regular).
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Martin’s Measure

Given x ∈ ωω, recall that a cone is a set Cx of the form:

Cx := {deg(y) : x ≤T y}

x is also called the apex of the cone.

Definition

The Martin measure is the set:

D := {X ⊆ ω1 : CK
−1[X ] contains a cone}



Determinacy (Cont.) Martin’s Cone Theorem AD and Measurability

D is clearly a filter, as the intersection of two cones remains to be
a cone (if A and B are Turing degrees, then CA ∩ CB = CA⊕B).
Furthermore, using countable choice, given Turing degrees
{An}n<ω we may define the supremum A :=

⊕
n<ω An. Then:⋂

n<ω

CAn = CA

Therefore, D is a ω1-complete filter.

Theorem (Martin, Solovay)

If AD holds, then D is a ω1-complete non-principal ultrafilter on
ω1.
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Proof.

We first use AD to show that D is an ultrafilter. Let X ⊆ ω1.
Note that CK−1[ω1 \ X ] = Γ \ CK−1[X ]. Let Λ := CK−1[X ], and it
suffices to show that either Λ or Γ \ Λ contains a cone.

Let AΛ := {x ∈ ωω : [x ] ∈ Λ}. By AD, GAΛ
is determined, so there

exists a winning strategy σ for either Player I or II. We consider the
cone C := Cdeg(σ).

(1) Suppose σ is a winning strategy for I. Let x ∈ ωω such that
σ ≤T x . Let y := σ ∗ x . Then:

x ≤T y ≤T σ ∗ x ≤T x

so [x ] = [y ]. Since I wins with σ, x ∈ AΛ. Therefore [y ] ∈ Λ,
so C ⊆ Λ.

(2) Similarly, if σ is a winning strategy for I, then C ⊆ Γ \ Λ.
Thus D is an ultrafilter.
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Proof (Cont.)

We now show that D is non-principal. Suppose not, so {α} ∈ D
for some α < ω1. Let x ∈ ωω such that Cx ⊆ CK−1(α). In other
words, we have that:

x ≤T y =⇒ ωy
1 = α

Let T be a tree such that ∥T∥ > α. Let y ∈ ωω such that
[y ] = [x ]⊕ deg(T ). Clearly x ≤T y , so by the above we have that
ωy
1 = α. But then T is recursive in y , so ωy

1 ≥ ∥T∥ > α, a
contradiction.
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A few remarks on some related results:

(1) The theorem can be proved without recursion theory. Given
x , y ∈ ωω, define:

x ⪯ y ⇐⇒ x ∈ L[y ]

This is a relation that behaves very similarly to ≤T. We can
basically repeat the proof with ≤T replaced by ⪯.

(2) AD implies that ℵ2 is also measurable.

(3) AD implies that cf(ωn) = ω2 for all n ≥ 2. In particular, ℵn is
not measurable for n ≥ 3.
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AD and Measurability

Theorem

AD implies that:

(1) Every set of reals is Lebesgue measurable.

(2) Every set of reals has the property of Baire.

(3) Every uncountable set of reals contains a perfect subset.

We shall only prove (1).
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Recall the following measure-theoretic fact (which can be proven in
ZF + CC):

Fact

For any A ⊆ R and ε > 0, there exists an open U ⊇ A such that
µ(U) ≤ µ∗(A) + ε.

Taking countable intersections of such open sets, there exists some
measurable E ⊇ A such that every measurable subset of E \ A is
null. Therefore, it suffices to show that:

Under AD, if S ⊆ R is such that every measurable subset of S is
null, then S is null.
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The Covering Game

We introduce a game that we need to apply AD to. Fix some
S ⊆ [0, 1] and ε > 0 such that every measurable subset of S is
null. We let Kn to be the set of all sets G ⊆ R such that:

(1) G is a finite union of rational intervals.

(2) µ(G ) ≤ ε
22(n+1) .

By countable choice, Kn is countable. We enumerate Kn by writing
Kn = {Gn

k : n < ω}.
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Given (a0, a1, . . . ) ∈ {0, 1}ω, we define:

a :=
∞∑
n=0

an
2n+1

The rules of the game are as follows:

(1) an = 0 or 1 for all n.

(2) a ∈ S .

(3) a /∈
⋃∞

n=0 G
n
bn
.

Intuitively, Player I tries to play a real number a ∈ S , and Player II
tries to cover a by some union

⋃∞
n=0Hn such that Hn ∈ Kn for all

n.
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Lemma

Player I does not have a winning strategy in this game.

Proof.

Suppose σ is a winning strategy for I. Define f : ωω → ωω by:

f (b) = a = (a0, a1, . . . ), where σ ∗ b = (a0, b0, a1, b1, . . . )

Clearly f is continuous. We borrow the fact that the continuous
image of AN open set is measurable, and so Z := f [ωω] is a
measurable subset of S .

By the hypothesis on S , Z is null. Since null sets can be covered
by arbitrarily small open sets, we may pick Gn

bn
∈ Kn such that

Z ⊆
⋃∞

n=0 G
n
bn
. If II plays (b0, b1, . . . ), then clearly I always lose

whenever I follows the strategy σ, a contradiction.
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Proof of Theorem.

By AD and the previous lemma, II has a winning strategy τ . It
suffices to show that µ∗(S) ≤ ε for arbitrarily ε > 0.

For each s = (a0, . . . , an) of 0 and 1, let:

Gs := Gn
bn , where bn = σ(a0, b0, . . . , bn−1, an)

Since τ is a winning strategy, for any a = (a0, a1, . . . ) ∈ S which I
plays, we have that a ∈

⋃
s⊑a Gs . Thus:

S ⊆
⋃

s∈{0,1}<ω

Gs =
∞⋃
n=1

⋃
s∈{0,1}n

Gs
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Proof of Theorem (Cont.)

Now for any n, we have that:

µ

 ⋃
s∈{0,1}n

Gs

 ≤
∑

s∈{0,1}n
µ(Gs) ≤ 2n · ε

22n
=

ε

2n

Therefore:

µ∗(S) ≤
∞∑
n=1

µ

 ⋃
s∈{0,1}n

Gs

 ≤
∞∑
n=1

ε

2n
= ε

as desired.
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Concluding remarks:

(1) Unsurprisingly, the “converse” to the theorem is false. We
have that “ZF + DC+ Every subset of R is Lebesgue
measurable” is equiconsistent with “ZFC + ∃inaccessible”,
while we recall that ZF + AD is equiconsistent with ω many
Woodin cardinals.

(2) However, we do not know if the three properties are
“independent” - for instance, it’s open if “ZF + DC+ Every
subset of R is Lebesgue measurable” implies that every subset
of R has the perfect set property.


	Determinacy (Cont.)
	Martin's Cone Theorem
	AD and Measurability

