

 $\overset{1}{\Sigma_2^1-Sets}_{\text{OOOOOOOO}}$

Shoenfield Absoluteness

Applications of Shoenfield Absoluteness

NUS Reading Seminar Summer 2023 Session 3

Clement Yung

26 May 2023

Recall that an *r*-sequential tree is a subset:

$$\mathcal{T} \subseteq \mathsf{Seq}_r = \{(s_1, \ldots, s_r) \in (\omega^{\omega})^r : |s_1| = \cdots = |s_r|\}$$

that is closed under initial segments - i.e. if $(s_1, \ldots, s_r) \in T$, then for all $n \leq |s_i|$, $(s_1 \upharpoonright n, \ldots, s_r \upharpoonright n) \in T$.

Shoenfield Absoluteness

We now consider a slight generalisation of such trees. We define $Seq(K) := K^{<\omega}$.

Definition

Trees (Again)

Let K be a set and $r \ge 1$. A tree on $\omega^r \times K$ is a subset $T \subseteq \text{Seq}_r \times \text{Seq}(K)$ that is closed under initial segments.

For instance, an *r*-dimensional sequential tree is a tree on ω^r .

Trees (Again) 00●00 Σ_2^1 -Sets

Shoenfield Absoluteness

Applications of Shoenfield Absoluteness

Given a tree T on $\omega^r \times K$, for $x \in \omega^r$ we can then once again define the "projection" as:

$$T(x) := \{h \in Seq(K) : (x \upharpoonright |h|, h) \in T\}$$

A recap of Π_1^1 normal form:

Theorem (Normal Form for Π_1^1 Sets)

Let $A \subseteq \omega^{\omega}$. Then A is $\Sigma_1^1(a)$ iff there exists a tree $T \subseteq \text{Seq}_2$ recursive in a such that:

 $x \in A \iff T(x)$ is ill-founded

 $\overset{\boldsymbol{\Sigma}_2^1-Sets}{\overset{0}{\scriptstyle 000000000}}$

Shoenfield Absoluteness

Applications of Shoenfield Absoluteness

In other words, we have that:

$$A = \{x \in \omega^{\omega} : T(x) \text{ is ill-founded}\}$$

Notation

Let T be a tree on $\omega \times K$. Then:

$$p[T] := \{x \in \omega^{\omega} : T(x) \text{ is ill-founded}\}$$

Shoenfield Absoluteness

Applications of Shoenfield Absoluteness

Definition

Let κ be an infinite cardinal. A set $A \subseteq \omega^{\omega}$ is κ -Suslin if A = p[T] for some tree T on $\omega \times \kappa$.

Therefore, we may reword Π_1^1 normal form theorem to say that:

 $A \subseteq \omega^{\omega}$ is $\Sigma_1^1(a)$ iff A = p[T] for some tree T on $\omega \times \omega$ recursive in a.

The main theorem of this section is as follows.

Theorem

If $A \subseteq \omega^{\omega}$ is $\Sigma_2^1(a)$, then A = p[T] for some tree T on $\omega \times \omega_1$ such that $T \in L[a]$.

Loosely speaking, $T \in L[a]$ means that T can be defined from a and some really simple objects.

Similar to the proof of Π_1^1 normal forms, we shall try to find an appropriate relation recursive in *a*, then "close it under initial segments".

Shoenfield Absoluteness

In other words, we wish to find some tree T on $\omega \times \omega_1$, with $T \in L[a]$, such that:

$$x \in A \iff \exists h \in \omega_1^\omega \, \forall n \, (x \restriction n, h \restriction n) \in T$$

The proof of the theorem would follow the steps below:

(1) "Simplify" what it means for A to be Σ₂¹(a).
 (2) Find a tree T' on ω² × ω₁, with T ∈ L[a], such that:

$$x \in A \iff \exists y \in \omega^{\omega} \exists h \in \omega_1^{\omega} \forall n (x \restriction n, y \restriction n, h \restriction n) \in T'$$

(3) Transform T' into a tree T on $\omega \times \omega_1$ with the desired property.

Shoenfield Absoluteness

Applications of Shoenfield Absoluteness

Proof, Step 1.

Let $A \subseteq \omega^{\omega}$ be $\Sigma_2^1(a)$. In other words, there exists a $\Pi_1^1(a)$ -set $B \subseteq (\omega^{\omega})^2$ such that:

$$x \in A \iff \exists y \in \omega^{\omega}(x, y) \in B$$

By the Π_1^1 normal form, there exists some tree $U \subseteq \text{Seq}_3$ recursive in *a* such that:

 $\begin{aligned} & x \in A \\ \iff \exists y \in \omega^{\omega} \ U(x, y) \text{ is well-founded} \\ \iff \exists y \in \omega^{\omega} \exists a \text{ rank function } f : U(x, y) \to \omega_1 \\ \iff \exists y \in \omega^{\omega} \exists f : \text{Seq} \to \omega_1 \text{ s.t. } f \upharpoonright U(x, y) \text{ is order-preserving} \end{aligned}$

Note that by the countability of U(x, y), we assumed that $ran(f) \subseteq \omega_1$.

Σ₂¹-Sets 000●00000 Shoenfield Absoluteness

Applications of Shoenfield Absoluteness

Proof, Step 1. (Cont.)

Fix some recursive enumeration Seq = $\{u_n : n < \omega\}$ such that $|u_n| \le n$ for all n. Given a function f with dom $(f) \subseteq \omega$, we define f with dom $(f^*) \subseteq$ Seq by $f^*(u_n) := f(n)$. Using this enumeration we get that:

 $x \in A \iff \exists y \in \omega^{\omega} \exists h \in \omega_1^{\omega} \text{ s.t. } h^* {\upharpoonright} U(x, y) \text{ is order-preserving}$

 $\sum_{\substack{2\\0000 \bullet 0000}}^{1}$

Shoenfield Absoluteness

Proof, Step 2.

We define a tree T' on $\omega^2 \times \omega_1$ by "closing" the relation in the previous slide under initial segments. More precisely, stipulate that:

 $(s, t, h) \in T' \iff h^* {\upharpoonright} U_{s,t}$ is order-preserving

where:

$$U_{s,t} := \{ u \in \mathsf{Seq} : |u| \le |s| \land (s \upharpoonright |u|, t \upharpoonright |u|, u) \in U \}$$

It's easy to check that T' is a tree.

 $\begin{array}{c} \text{Trees (Again)} \\ \text{00000} \end{array} \qquad \begin{array}{c} \Sigma_2^1 \text{-Sets} \\ \text{000000} \end{array}$

Shoenfield Absoluteness

Applications of Shoenfield Absoluteness

Proof, Step 2. (Cont.)

Now observe that given $x, y \in \omega^{\omega}$, we have:

000

$$U(x, y) = \{ u \in \mathsf{Seq} : (x \upharpoonright |u|, y \upharpoonright |u|, u) \in U \}$$

= $\{ u \in \mathsf{Seq} : u \in U_{x \upharpoonright |u|, y \upharpoonright |u|} \}$
= $\bigcup_{n < \omega} \{ u \in \mathsf{Seq} : |u| \le n \land u \in U_{x \upharpoonright n, y \upharpoonright n} \}$
= $\bigcup_{n < \omega} U_{x \upharpoonright n, y \upharpoonright n}$

Therefore, given $x, y \in \omega^{\omega}$ and $h \in \omega_1^{\omega}$, we have that:

$$h \in T'(x, y) \iff \forall n (x \upharpoonright n, y \upharpoonright n, h \upharpoonright n) \in T'$$

$$\iff \forall n (h \upharpoonright n)^* \upharpoonright U_{x \upharpoonright n, y \upharpoonright n} \text{ is order-preserving}$$

$$\iff h^* \upharpoonright U(x, y) \text{ is order-preserving}$$

 $\underset{00000000000}{\Sigma_2^1-Sets}$

Shoenfield Absoluteness

Applications of Shoenfield Absoluteness

Proof, Step 2. (Cont.)

Therefore:

$$\begin{aligned} x \in A \iff \exists y \in \omega^{\omega} \exists h \in \omega_1^{\omega} \text{ s.t. } h^* \upharpoonright U(x, y) \text{ is order-preserving} \\ \iff \exists y \in \omega^{\omega} \exists h \in \omega_1^{\omega} h \in T'(x, y) \\ \iff \exists y \in \omega^{\omega} \exists h \in \omega_1^{\omega} \forall n (x \upharpoonright n, y \upharpoonright n, h \upharpoonright n) \in T' \end{aligned}$$

Hence this T' is the desired tree for step (2).

Proof, Step 3.

 Σ_2^1 -Sets

Trees (Again)

We first transform the tree T' (on $\omega^2 \times \omega_1$) into a tree T'' on $\omega \times (\omega \times \omega_1)$ by the map:

$$((s(0), \ldots, s(n-1)), (t(0), \ldots, t(n-1)), (h(0), \ldots, h(n-1))))$$

 \downarrow
 $((s(0), \ldots, s(n-1)), ((t(0), h(0)), \ldots, (t(n-1), h(n-1))))$

Clearly this map is recursive. This gives us:

$$x \in A \iff \exists g \in (\omega \times \omega_1)^\omega \, \forall n \, (x \restriction n, g \restriction n) \in T''$$

Using a definable correspondence between ω_1 and $\omega \times \omega_1$, we get a tree T such that:

$$x \in A \iff \exists g \in \omega_1^\omega \, \forall n \, (x \restriction n, g \restriction n) \in T$$

so A = p[T]. Clearly T is constructible from a.

Σ₂¹-Sets 00000000 Shoenfield Absoluteness

Applications of Shoenfield Absoluteness

We remark that if $x \in A$, so T(x) is ill-founded, then by reversing the proof we have an algorithm which obtains a real $y \in \omega^{\omega}$ (dependent only on x and ω_1) such that U(x, y) is well-founded. This will be important in proving Shoenfield absoluteness theorem later.

Shoenfield Absoluteness

Applications of Shoenfield Absoluteness

Shoenfield Absoluteness Theorem

Theorem

Trees (Again)

If P is a $\Sigma_2^1(a)$ relation, then P is absolute for every inner models M of ZF + DC such that $a \in M$. In particular, P is absolute for L.

Trees (Again)

 Σ_2^1 -Sets

Shoenfield Absoluteness

One may think that we can mimic the proof of Mostowski absoluteness theorem to prove Shoenfield absoluteness theorem. However, this does not work.

Suppose *P* is $\Sigma_1^1(a)$ and $R \subseteq \text{Seq}_2$ is a recursive relation in which:

$$P(x) \iff \exists y \in \omega^{\omega} \,\forall n \, R(x \restriction n, y \restriction n)$$

We defined the tree $T \subseteq Seq_2$ by:

$$T := \{(s,t) \in \mathsf{Seq}_2 : \forall n \le |s| \, R(s \restriction n, t \restriction n)\}$$

then showed that:

$$P(x) \iff T(x)$$
 is ill-founded

We proved Mostowski absoluteness theorem as follows:

- (1) If $M \models P(x)$, then $M \models T(x)$ is ill-founded, so $[T(x)] \neq \emptyset$.
- (2) If $M \models \neg P(x)$, then $M \models T(x)$ is well-founded, so there exists a rank function on T.

We implicitly used the fact that the tree T, constructed in V and in M, are the same.

Shoenfield Absoluteness

What about the tree T constructed such that P = p[T] when P is $\Sigma_2^1(a)$?

We started with:

$$P(x) \iff \exists y \in \omega^{\omega} U(x, y) \text{ is well-founded}$$

where $U \subseteq \text{Seq}_3$, and constructed a tree T on $\omega \times \omega_1$ such that from U. We immediately see that the tree T constructed in Mneed not be the same as that in V - for instance, we need not have $\omega_1^M = \omega_1$.

We thus have to work around this issue when proving Shoenfield absoluteness theorem.

Proof.

Suppose *P* is $\Sigma_2^1(a)$. As discussed before, there exists a tree $U \subseteq \text{Seq}_3$, recursive in *a*, such that:

 $P(x) \iff \exists y \ U(x,y)$ is well-founded

This U is independent of the choice of models, i.e. we also have that:

$$M \models P(x) \iff \exists y \in M M \models U(x, y)$$
 is well-founded

For any relation R on $\omega^{<\omega}$, the statement "R is well-founded" is Π_1^1 (Exercise), so it is absolute by Mostowski absoluteness theorem. Therefore:

$$M \models P(x) \iff \exists y \in M \ U(x, y)$$
 is well-founded

This immediately proves that if $M \models P(x)$, then P(x) holds. It remains to show the converse.

Shoenfield Absoluteness

Applications of Shoenfield Absoluteness

Proof (Cont.)

Suppose P(x) holds. Let T be the tree on $\omega \times \omega_1$, constructed from U in V, such that P = p[T]. Therefore:

T(x) is ill-founded

Since well-foundedness is absolute, we have that:

 $M \models T(x)$ is ill-founded

Despite the fact that $T \in M$, we need not have $M \models P = p[T]$. However, as remarked earlier, we can instead reverse the proof of that P is ω_1 -Suslin to obtain a $y \in (\omega^{\omega})^M$ such that:

 $M \models U(x, y)$ is well-founded

Hence $M \models P(x)$.

DC is used here for the fact that "R is well-founded" is a Π_1^1 statement. For more details, see Lemma 25.9 of Jech.

However, all trees involved can in fact be canonically well-ordered, as they are subsets of $\omega^{<\omega}$. Consequently, we do not require DC to choose an infinite branch when proving that "R is well-founded" is Π_1^1 . Therefore, Shoenfield absoluteness theorem applies to models of ZF, and its inner models of ZF.

A few concluding remarks:

- (1) Given $x \subseteq \omega$, we say that x is $\Sigma_n^1(a)$ (resp. $\Pi_n^1(a)$) if the set $\{e_x\}$, where e_x is the indicator function of the set x, is $\Sigma_n^1(a)$ (resp. $\Pi_n^1(a)$). Shoenfield absoluteness theorem implies that if x is $\Sigma_2^1(a)$ or $\Pi_2^1(a)$, then $x \in L[a]$. In particular, every Σ_2^1/Π_2^1 real is constructible.
- (2) There exists a model of set theory (without assuming large cardinals) in which there is a non-constructible Δ_3^1 real. Thus, Shoenfield absoluteness theorem is the best possible ZFC absoluteness theorem.

 $\sum_{\substack{2\\000000000}}^{1}$

Shoenfield Absoluteness

Applications of Shoenfield Absoluteness •••

The power of Shoenfield absoluteness lies in the following result.

Corollary If *P* is a Σ_2^1/Π_2^1 statement, and ZFC \vdash *P*, then ZF \vdash *P*.

Proof.

Let *M* be a model of ZF. Then L^M is a model of ZFC. Since ZFC $\vdash P$, $L^M \models P$. By Shoenfield absoluteness theorem, $M \models P$. Since this holds for any model of ZF, by Gödel's completeness theorem, ZF $\vdash P$.

Many statements in "ordinary mathematics" are "simple enough" to be of complexity Σ_2^1/Π_2^1 or lower. Examples include:

- (1) Brouwer fixed point theorem.
- (2) Hanh-Banach theorem for separable spaces.
- (3) The existence of algebraic closures for countable fields.

See more examples here.