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Recall that an r-sequential tree is a subset:
T CSeq, ={(s1,...,5) € (W) :|s1] =+ =|s/|}

that is closed under initial segments - i.e. if (s1,...,s,) € T, then
for all n <|s|, (s1]n,...,s/In) e T.
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We now consider a slight generalisation of such trees. We define
Seq(K) := K=v.

Definition

Let K beaset and r > 1. A tree on w” x K is a subset
T C Seq, x Seq(K) that is closed under initial segments.

For instance, an r-dimensional sequential tree is a tree on w".
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Given a tree T on w” x K, for x € w" we can then once again
define the “projection” as:

T(x):={h € Seq(K) : (x[|h|,h) € T}

A recap of M} normal form:

Theorem (Normal Form for M} Sets)

Let AC w“. Then A is ¥1(a) iff there exists a tree T C Seq,
recursive in a such that:

x € A <= T(x) is ill-founded
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In other words, we have that:

A= {x € w”: T(x) is ill-founded}

Let T be a tree on w x K. Then:

p[T] :={x € w* : T(x) is ill-founded }
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Definition
Let x be an infinite cardinal. A set A C w* is k-Suslin if A= p[T]
for some tree T on w X kK.

Therefore, we may reword M} normal form theorem to say that:

A C w¥ is ¥1(a) iff A= p[T] for some tree T on w x w recursive
in a.
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¥ 1-Sets

The main theorem of this section is as follows.

Theorem

If AC w® is £3(a), then A = p[T] for some tree T on w x w1
such that T € L[a].

Loosely speaking, T € L[a] means that T can be defined from a
and some really simple objects.

Similar to the proof of I'I% normal forms, we shall try to find an
appropriate relation recursive in a, then “close it under initial
segments”.
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In other words, we wish to find some tree T on w X wq, with
T € L[a], such that:

x €A < JheuwiVn(x[n,hln) e T

The proof of the theorem would follow the steps below:

(1) “Simplify" what it means for A to be ¥3(a).
(2) Find a tree T’ on w? x wy, with T € L[a], such that:

x€A < JyewIhewyVn(xIn,yln hin)e T

(3) Transform T’ into a tree T on w X wy with the desired
property.
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Proof, Step 1.

Let A C w® be ¥1(a). In other words, there exists a IM1(a)-set
B C (w*)? such that:

x€EA < Jyew(x,y)eB

By the I'I% normal form, there exists some tree U C Seqs recursive
in a such that:

x €A
< Jdy € w” U(x,y) is well-founded
<= Jdy € w”3Ja rank function f : U(x,y) — w1
<= dy € w¥3If : Seq — wy s.t. f]U(x,y) is order-preserving

Note that by the countability of U(x,y), we assumed that
ran(f) C ws.
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Proof, Step 1. (Cont.)

Fix some recursive enumeration Seq = {u, : n < w} such that
|up| < n for all n. Given a function f with dom(f) C w, we define
f with dom(f*) C Seq by f*(u,) := f(n). Using this enumeration
we get that:

x €A < Jy ewIheuwf st. "[U(x,y) is order-preserving
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Proof, Step 2.

We define a tree T’ on w? x wy by “closing” the relation in the

previous slide under initial segments. More precisely, stipulate that:
(s,t,h) € T' <= h*|Us is order-preserving
where:
Us,e == {u € Seq : [u] < |s| A (sl]ul, t[]ul, u) € U}

It's easy to check that T is a tree.
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Proof, Step 2. (Cont.)

Now observe that given x,y € w®, we have:

U(x,y) = {u € Seq : (x[|ul,yI|u|,u) € U}
= {u € Seq: u € Usupyriu }

= U {ueSeq:|ul <nAu€ Ugnyin}

n<w

= U Ux[n,y{n

n<w
Therefore, given x,y € w“ and h € w{, we have that:
he T'(x,y) < Vn(xIn,yln,hln) € T’

X
<= Vn(h[n)*[Uxin,n is order-preserving
<= h*"[U(x,y) is order-preserving
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Proof, Step 2. (Cont.)

Therefore:

x €A < dy cw?Ihecwl st h*[U(x,y) is order-preserving
< dyew’Ihewihe T (xy)
< 3y e w’IhewfVn(xInyln hin)e T

Hence this T’ is the desired tree for step (2).
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Proof, Step 3.

We first transform the tree T’ (on w
w X (w X wy) by the map:

((s(0), ..., s(n— 1)), (£(0),...

2 x wy) into a tree T” on

,t(n—1)), (h(0), ..., h(n—1)))
1

((s(0),...,s(n—1)),((£(0), h(0)), ..., (t(n — 1), h(n = 1)))
Clearly this map is recursive. This gives us:

x€A < Jge(wxw)Vn(xIngln)e T"

Using a definable correspondence between w; and w x wiy, we get a
tree T such that:

x €A << dgewiVn(x[ngin)eT

so A= p[T]. Clearly T is constructible from a.
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We remark that if x € A, so T(x) is ill-founded, then by reversing
the proof we have an algorithm which obtains a real y € w®
(dependent only on x and wy) such that U(x,y) is well-founded.

This will be important in proving Shoenfield absoluteness theorem
later.



If P is a ¥3(a) relation, then P is absolute for every inner models
M of ZF + DC such that a € M. In particular, P is absolute for L.
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One may think that we can mimic the proof of Mostowski
absoluteness theorem to prove Shoenfield absoluteness theorem.
However, this does not work.

Suppose P is ¥1(a) and R C Seq, is a recursive relation in which:
P(x) <= dy € w“VnR(x[n,y[n)
We defined the tree T C Seq, by:
T :={(s,t) € Seq, : Vn < |s| R(s[n, t[n)}
then showed that:

P(x) <= T(x) is ill-founded
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We proved Mostowski absoluteness theorem as follows:

(1) If M = P(x), then M |= T(x) is ill-founded, so [T (x)] # 0.
(2) If M |==P(x), then M |= T(x) is well-founded, so there
exists a rank function on T.

We implicitly used the fact that the tree T, constructed in V and
in M, are the same.
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What about the tree T constructed such that P = p[T] when P is
¥5(a)?

We started with:
P(x) < 3dy € w” U(x,y) is well-founded

where U C Seqs, and constructed a tree T on w X w; such that

from U. We immediately see that the tree T constructed in M

need not be the same as that in V - for instance, we need not have
M _

We thus have to work around this issue when proving Shoenfield

absoluteness theorem.
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Proof.

Suppose P is ¥3(a). As discussed before, there exists a tree
U C Seqs, recursive in a, such that:

P(x) <= 3y U(x,y) is well-founded

This U is independent of the choice of models, i.e. we also have
that:

M= P(x) <= dy € MM = U(x,y) is well-founded

For any relation R on w<%, the statement “R is well-founded” is
N} (Exercise), so it is absolute by Mostowski absoluteness
theorem. Therefore:

M = P(x) <= dy € M U(x,y) is well-founded

This immediately proves that if M = P(x), then P(x) holds. It
remains to show the converse.
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Proof (Cont.)

Suppose P(x) holds. Let T be the tree on w x wy, constructed
from U in V, such that P = p[T]. Therefore:

T(x) is ill-founded
Since well-foundedness is absolute, we have that:
M = T(x) is ill-founded

Despite the fact that T € M, we need not have M = P = p[T].
However, as remarked earlier, we can instead reverse the proof of
that P is wi-Suslin to obtain a y € (w*)™ such that:

M = U(x, y) is well-founded

Hence M = P(x).
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DC is used here for the fact that “R is well-founded” is a M}
statement. For more details, see Lemma 25.9 of Jech.

However, all trees involved can in fact be canonically well-ordered,

as they are subsets of w<“. Consequently, we do not require DC to
choose an infinite branch when proving that “R is well-founded” is
I—I%. Therefore, Shoenfield absoluteness theorem applies to models

of ZF, and its inner models of ZF.
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A few concluding remarks:

(1) Given x C w, we say that x is 1(a) (resp. M(a)) if the set
{e,}, where e, is the indicator function of the set x, is ¥1(a)
(resp. M1(a)). Shoenfield absoluteness theorem implies that if
x is ¥3(a) or M3(a), then x € L[a]. In particular, every ¥3 /M3
real is constructible.

(2) There exists a model of set theory (without assuming large
cardinals) in which there is a non-constructible A} real. Thus,
Shoenfield absoluteness theorem is the best possible ZFC
absoluteness theorem.
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The power of Shoenfield absoluteness lies in the following result.

Corollary
If P is a Z%/I'I% statement, and ZFC + P, then ZF -~ P.

Proof.
Let M be a model of ZF. Then LM is a model of ZFC. Since
ZFC P, LM |= P. By Shoenfield absoluteness theorem, M = P.

Since this holds for any model of ZF, by Godel's completeness
theorem, ZF - P. Il
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Many statements in “ordinary mathematics” are “simple enough”
to be of complexity ¥ /M3 or lower. Examples include:

(1) Brouwer fixed point theorem.
(2) Hanh-Banach theorem for separable spaces.

(3) The existence of algebraic closures for countable fields.

See more examples here.


https://mathoverflow.net/questions/74014/whats-a-magical-theorem-in-logic/74030#74030
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