

[Shoenfield Absoluteness](#page-15-0)
 00000000
 00

NUS Reading Seminar Summer 2023 Session 3

Clement Yung

26 May 2023

Recall that an r-sequential tree is a subset:

$$
\mathcal{T} \subseteq \mathsf{Seq}_r = \{ (s_1, \ldots, s_r) \in (\omega^\omega)^r : |s_1| = \cdots = |s_r| \}
$$

that is closed under initial segments - i.e. if $(s_1, \ldots, s_r) \in \mathcal{T}$, then for all $n \leq |s_i|$, $(s_1 \nvert n, \ldots, s_r \nvert n) \in \mathcal{T}$.

We now consider a slight generalisation of such trees. We define $\mathsf{Seq}(K):=K^{<\omega}.$

Definition

[Trees \(Again\)](#page-1-0)
∩●○○○

Let K be a set and $r\geq 1$. A tree on $\omega^r\times K$ is a subset $T \subseteq \text{Seq}_r \times \text{Seq}(K)$ that is closed under initial segments.

For instance, an r-dimensional sequential tree is a tree on ω^r .

Given a tree T on $\omega^r \times K$, for $x \in \omega^r$ we can then once again define the "projection" as:

$$
\mathcal{T}(x) := \{ h \in \mathsf{Seq}(K) : (x \mid h \mid, h) \in \mathcal{T} \}
$$

A recap of Π^1_1 normal form:

Theorem (Normal Form for Π^1_1 Sets)

Let $A \subseteq \omega^\omega$. Then A is $\Sigma^1_1(a)$ iff there exists a tree $T \subseteq \mathsf{Seq}_2$ recursive in a such that:

 $x \in A \iff T(x)$ is ill-founded

[Shoenfield Absoluteness](#page-15-0)
 $\begin{array}{c}\n\text{Applications of Shoenfield Absolutions}\n\text{S0000000}\n\end{array}$

In other words, we have that:

$$
A = \{x \in \omega^{\omega} : T(x) \text{ is ill-founded}\}
$$

Notation

Let T be a tree on $\omega \times K$. Then:

$$
p[T] := \{x \in \omega^{\omega} : T(x) \text{ is ill-founded}\}
$$

 Σ_{2}^{\perp} -Sets าก็คุคคุคคุคค

[Shoenfield Absoluteness](#page-15-0)
 $\begin{array}{c}\n\text{Opplications of Shoenfield Absolutions} \\
\text{00}\n\end{array}$

Definition

Let κ be an infinite cardinal. A set $A \subseteq \omega^\omega$ is κ -Suslin if $A = p[T]$ for some tree T on $\omega \times \kappa$.

Therefore, we may reword Π^1_1 normal form theorem to say that:

 $A \subseteq \omega^\omega$ is $\Sigma^1_1(a)$ iff $A = p[\,7\,]$ for some tree $\,7\,$ on $\omega \times \omega$ recursive in a.

The main theorem of this section is as follows.

Theorem

If $A \subseteq \omega^{\omega}$ is $\Sigma^1_2(a)$, then $A = p[T]$ for some tree T on $\omega \times \omega_1$ such that $T \in L[a]$.

Loosely speaking, $T \in L[a]$ means that T can be defined from a and some really simple objects.

Similar to the proof of Π^1_1 normal forms, we shall try to find an appropriate relation recursive in a, then "close it under initial segments".

In other words, we wish to find some tree T on $\omega \times \omega_1$, with $T \in L[a]$, such that:

$$
x\in A \iff \exists h\in \omega_1^{\omega}\ \forall n\ (x\mathord{\upharpoonright} n, h\mathord{\upharpoonright} n)\in \mathcal{T}
$$

The proof of the theorem would follow the steps below:

(1) "Simplify" what it means for A to be $\Sigma^1_2(a)$. (2) Find a tree \mathcal{T}' on $\omega^2\times\omega_1$, with $\mathcal{T}\in L[a]$, such that:

$$
x \in A \iff \exists y \in \omega^{\omega} \exists h \in \omega_1^{\omega} \forall n \big(x \mathord{\upharpoonright} n, y \mathord{\upharpoonright} n, h \mathord{\upharpoonright} n \big) \in \mathcal{T}'
$$

(3) Transform \mathcal{T}' into a tree \mathcal{T} on $\omega\times\omega_1$ with the desired property.

 Σ^{\perp} Setc [2](#page-7-0)

Proof, Step 1.

Let $A\subseteq\omega^\omega$ be $\Sigma^1_2(a)$. In other words, there exists a $\Pi^1_1(a)$ -set $B \subseteq (\omega^{\omega})^2$ such that:

$$
x \in A \iff \exists y \in \omega^{\omega}(x, y) \in B
$$

By the Π^1_1 normal form, there exists some tree $\mathit{U} \subseteq \mathsf{Seq}_3$ recursive in a such that:

 $x \in A$ $\iff \exists y \in \omega^{\omega} U(x, y)$ is well-founded $\iff \exists y \in \omega^\omega \exists$ a rank function $f: U(x, y) \to \omega_1$ $\iff \exists y \in \omega^\omega \, \exists f: \mathsf{Seq} \to \omega_1 \text{ s.t. } f{\upharpoonright} \mathsf{U}(x,y) \text{ is order-preserving}$

Note that by the countability of $U(x, y)$, we assumed that ran(f) $\subseteq \omega_1$.

 Σ^{\perp}_{\circ} -Sets [2](#page-7-0)

Proof, Step 1. (Cont.)

Fix some recursive enumeration Seq = $\{u_n : n < \omega\}$ such that $|u_n| \leq n$ for all n. Given a function f with dom $(f) \subseteq \omega$, we define f with dom $(f^*) \subseteq$ Seq by $f^*(u_n) := f(n)$. Using this enumeration we get that:

 $x\in A \iff \exists y\in \omega^\omega\,\exists h\in \omega_1^\omega$ s.t. $\,h^*\!\!\restriction\!\!U(x,y)\,$ is order-preserving

$$
\begin{array}{cc}\n\text{Trees (Again)} & \bullet & \bullet \\
\text{00000} & & \bullet\n\end{array}
$$

 Σ^{\perp} Setc [2](#page-7-0)

Proof, Step 2.

We define a tree \mathcal{T}' on $\omega^2\times\omega_1$ by "closing" the relation in the previous slide under initial segments. More precisely, stipulate that:

 $(\mathsf{s},t,h)\in \mathcal{T}' \iff h^*{\upharpoonright} \mathcal{U}_{\mathsf{s},t}$ is order-preserving

where:

$$
U_{s,t} := \{u \in \mathsf{Seq} : |u| \leq |s| \wedge (\mathsf{s} \upharpoonright |u|, t \upharpoonright |u|, u) \in U\}
$$

It's easy to check that T' is a tree.

These (Again)
\n
$$
\sum_{00000}^{1} \sum_{000000000}^{1} \sum_{000000000}^{1} \sum_{00000000}^{1} \sum_{00000000}^{1} \sum_{00000000}^{1} \sum_{00000000}^{1} \sum_{0000000}^{1} \sum_{0000000}^{1} \sum_{00000000}^{1} \sum_{00000000}^{1} \sum_{0000000}^{1} \sum_{00000000}^{1} \sum_{00000000}^{1} \sum_{00000000}^{1} \sum_{00000000}^{1} \sum_{00000000}^{1} \sum_{00000000}^{1} \sum_{00000000}^{1} \sum_{0000000}^{1} \sum_{0000000
$$

$$
=\bigcup_{n<\omega}U_{x\restriction n,y}
$$

Therefore, given $x, y \in \omega^{\omega}$ and $h \in \omega_1^{\omega}$, we have that:

 $\restriction n$

$$
h \in T'(x, y) \iff \forall n (x \upharpoonright n, y \upharpoonright n, h \upharpoonright n) \in T'
$$

\n
$$
\iff \forall n (h \upharpoonright n)^* \upharpoonright U_{x \upharpoonright n, y \upharpoonright n}
$$
 is order-preserving
\n
$$
\iff h^* \upharpoonright U(x, y) \text{ is order-preserving}
$$

[Trees \(Again\)](#page-1-0)
00000

 Σ^1_2 -Sets <u>000000∎00</u>

[Shoenfield Absoluteness](#page-15-0)
 00000000
 00

Proof, Step 2. (Cont.)

Therefore:

$$
x \in A \iff \exists y \in \omega^{\omega} \exists h \in \omega_1^{\omega} \text{ s.t. } h^* \upharpoonright U(x, y) \text{ is order-preserving}
$$

$$
\iff \exists y \in \omega^{\omega} \exists h \in \omega_1^{\omega} h \in T'(x, y)
$$

$$
\iff \exists y \in \omega^{\omega} \exists h \in \omega_1^{\omega} \forall n (x \upharpoonright n, y \upharpoonright n, h \upharpoonright n) \in T'
$$

Hence this T' is the desired tree for step (2).

Proof, Step 3.

1 [2](#page-7-0)

[Trees \(Again\)](#page-1-0)

We first transform the tree $\, T'$ (on $\omega^2 \times \omega_1)$ into a tree $\, T''$ on $\omega \times (\omega \times \omega_1)$ by the map:

$$
((s(0),...,s(n-1)),(t(0),...,t(n-1)),(h(0),...,h(n-1)))
$$

\n \downarrow
\n $((s(0),...,s(n-1)),((t(0),h(0)),...,t(n-1),h(n-1)))$

[Shoenfield Absoluteness](#page-15-0)
 $\begin{array}{c}\n 00000000 \\
 00\n \end{array}$

Clearly this map is recursive. This gives us:

$$
x\in A \iff \exists g\in (\omega\times\omega_1)^{\omega}\,\forall n\, (x\mathord{\restriction} n,g\mathord{\restriction} n)\in \mathcal{T}''
$$

Using a definable correspondence between ω_1 and $\omega \times \omega_1$, we get a tree T such that:

$$
x\in A \iff \exists g\in \omega_1^\omega \,\forall n\, (x\mathord{\upharpoonright} n, g\mathord{\upharpoonright} n) \in \mathcal{T}
$$

so $A = p[T]$. Clearly T is constructible from a.

We remark that if $x \in A$, so $T(x)$ is ill-founded, then by reversing the proof we have an algorithm which obtains a real $y\in\omega^\omega$ (dependent only on x and ω_1) such that $U(x, y)$ is well-founded. This will be important in proving Shoenfield absoluteness theorem later.

 Σ^1 -Sets 00000000

[-Sets](#page-6-0) [Shoenfield Absoluteness](#page-15-0) [Applications of Shoenfield Absoluteness](#page-23-0)

Shoenfield Absoluteness Theorem

Theorem

[Trees \(Again\)](#page-1-0)

If P is a $\Sigma^1_2(a)$ relation, then P is absolute for every inner models M of $ZF + DC$ such that $a \in M$. In particular, P is absolute for L. Σ_{2}^{\perp} -Sets annono

[Trees \(Again\)](#page-1-0)

One may think that we can mimic the proof of Mostowski absoluteness theorem to prove Shoenfield absoluteness theorem. However, this does not work.

Suppose P is $\Sigma^1_1(a)$ and $R \subseteq \mathsf{Seq}_2$ is a recursive relation in which:

$$
P(x) \iff \exists y \in \omega^{\omega} \forall n R(x \mathord{\upharpoonright} n, y \mathord{\upharpoonright} n)
$$

We defined the tree $T \subset \text{Seq}_2$ by:

$$
\mathcal{T}:=\{(s,t)\in \mathsf{Seq}_2: \forall n\leq |s|\ R(s{\upharpoonright} n,t{\upharpoonright} n)\}
$$

then showed that:

$$
P(x) \iff T(x) \text{ is ill-founded}
$$

We proved Mostowski absoluteness theorem as follows:

- (1) If $M \models P(x)$, then $M \models T(x)$ is ill-founded, so $[T(x)] \neq \emptyset$.
- (2) If $M \models \neg P(x)$, then $M \models T(x)$ is well-founded, so there exists a rank function on T.

We implicitly used the fact that the tree T , constructed in V and in M , are the same.

 Σ_{\circ}^{\perp} -Sets [2](#page-7-0)

What about the tree T constructed such that $P = p[T]$ when P is $\Sigma^1_2(a)$?

We started with:

$$
P(x) \iff \exists y \in \omega^{\omega} U(x, y) \text{ is well-founded}
$$

where $U \subseteq \mathsf{Seq}_3$, and constructed a tree $\mathcal T$ on $\omega \times \omega_1$ such that from U. We immediately see that the tree T constructed in M need not be the same as that in V - for instance, we need not have $\omega_1^M = \omega_1.$

We thus have to work around this issue when proving Shoenfield absoluteness theorem.

 $\Sigma_2^{\frac{1}{2}}$ -Sets าก็คุคคุคคุคค

Proof.

Suppose P is $\Sigma^1_2(a)$. As discussed before, there exists a tree $U \subseteq \mathsf{Seq}_3$, recursive in a, such that:

 $P(x) \iff \exists y \ U(x, y)$ is well-founded

This U is independent of the choice of models, i.e. we also have that:

$$
M \models P(x) \iff \exists y \in M \land \models U(x, y) \text{ is well-founded}
$$

For any relation R on $\omega^{<\omega}$, the statement "R is well-founded" is Π^1_1 (Exercise), so it is absolute by Mostowski absoluteness theorem. Therefore:

$$
M \models P(x) \iff \exists y \in M \cup (x, y)
$$
 is well-founded

This immediately proves that if $M \models P(x)$, then $P(x)$ holds. It remains to show the converse.

 Σ^1 -Sets [2](#page-7-0)

[-Sets](#page-6-0) [Shoenfield Absoluteness](#page-15-0) [Applications of Shoenfield Absoluteness](#page-23-0)

Proof (Cont.)

Suppose $P(x)$ holds. Let T be the tree on $\omega \times \omega_1$, constructed from U in V, such that $P = p[T]$. Therefore:

 $T(x)$ is ill-founded

Since well-foundedness is absolute, we have that:

 $M \models T(x)$ is ill-founded

Despite the fact that $T \in M$, we need not have $M \models P = p[T]$. However, as remarked earlier, we can instead reverse the proof of that P is ω_1 -Suslin to obtain a $\mathcal{y} \in (\omega^\omega)^M$ such that:

 $M \models U(x, y)$ is well-founded

Hence $M \models P(x)$.

DC is used here for the fact that "R is well-founded" is a Π^1_1 statement. For more details, see Lemma 25.9 of Jech.

However, all trees involved can in fact be canonically well-ordered, as they are subsets of $\omega^{<\omega}.$ Consequently, we do not require DC to choose an infinite branch when proving that " R is well-founded" is Π^1_1 . Therefore, Shoenfield absoluteness theorem applies to models of ZF, and its inner models of ZF.

A few concluding remarks:

 Σ_{\circ}^{\perp} -Sets [2](#page-7-0)

[Trees \(Again\)](#page-1-0)

- (1) Given $x \subseteq \omega$, we say that x is $\sum_{n=0}^{1} (a)$ (resp. $\prod_{n=0}^{1} (a)$) if the set $\{e_x\}$, where e_x is the indicator function of the set x, is $\Sigma_n^1(a)$ (resp. $\Pi_n^1(a)$). Shoenfield absoluteness theorem implies that if x is $\Sigma^1_2(a)$ or $\Pi^1_2(a)$, then $x\in L[a]$. In particular, every Σ^1_2/Π^1_2 real is constructible.
- (2) There exists a model of set theory (without assuming large cardinals) in which there is a non-constructible Δ^1_3 real. Thus, Shoenfield absoluteness theorem is the best possible ZFC absoluteness theorem.

 Σ_{2}^{\perp} -Sets [2](#page-7-0)

[-Sets](#page-6-0) [Shoenfield Absoluteness](#page-15-0) [Applications of Shoenfield Absoluteness](#page-23-0)

The power of Shoenfield absoluteness lies in the following result.

Corollary

If P is a $\mathbf{\Sigma}^1_2/\mathbf{\Pi}^1_2$ statement, and ZFC $\vdash P$, then ZF $\vdash P$.

Proof.

Let M be a model of ZF. Then L^M is a model of ZFC. Since ZFC ⊢ P , L $^M \models P$. By Shoenfield absoluteness theorem, $M \models P$. Since this holds for any model of ZF, by Gödel's completeness theorem, $ZF \vdash P$.

Many statements in "ordinary mathematics" are "simple enough" to be of complexity Σ^1_2/Π^1_2 or lower. Examples include:

- (1) Brouwer fixed point theorem.
- (2) Hanh-Banach theorem for separable spaces.
- (3) The existence of algebraic closures for countable fields.

See more examples [here.](https://mathoverflow.net/questions/74014/whats-a-magical-theorem-in-logic/74030#74030)