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Trees

Recall that an r -sequential tree is a subset:

T ⊆ Seqr = {(s1, . . . , sr ) ∈ (ωω)r : |s1| = · · · = |sr |}

that is closed under initial segments - i.e. if (s1, . . . , sr ) ∈ T , then
for all n ≤ |si |, (s1↾n, . . . , sr ↾n) ∈ T .
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We now consider a slight generalisation of such trees. We define
Seq(K ) := K<ω.

Definition

Let K be a set and r ≥ 1. A tree on ωr × K is a subset
T ⊆ Seqr ×Seq(K ) that is closed under initial segments.

For instance, an r -dimensional sequential tree is a tree on ωr .
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Given a tree T on ωr × K , for x ∈ ωr we can then once again
define the “projection” as:

T (x) := {h ∈ Seq(K ) : (x↾|h|, h) ∈ T}

A recap of Π1
1 normal form:

Theorem (Normal Form for Π1
1 Sets)

Let A ⊆ ωω. Then A is Σ1
1(a) iff there exists a tree T ⊆ Seq2

recursive in a such that:

x ∈ A ⇐⇒ T (x) is ill-founded
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In other words, we have that:

A = {x ∈ ωω : T (x) is ill-founded}

Notation

Let T be a tree on ω × K . Then:

p[T ] := {x ∈ ωω : T (x) is ill-founded}
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Definition

Let κ be an infinite cardinal. A set A ⊆ ωω is κ-Suslin if A = p[T ]
for some tree T on ω × κ.

Therefore, we may reword Π1
1 normal form theorem to say that:

A ⊆ ωω is Σ1
1(a) iff A = p[T ] for some tree T on ω × ω recursive

in a.
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Σ1
2-Sets

The main theorem of this section is as follows.

Theorem

If A ⊆ ωω is Σ1
2(a), then A = p[T ] for some tree T on ω × ω1

such that T ∈ L[a].

Loosely speaking, T ∈ L[a] means that T can be defined from a
and some really simple objects.

Similar to the proof of Π1
1 normal forms, we shall try to find an

appropriate relation recursive in a, then “close it under initial
segments”.
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In other words, we wish to find some tree T on ω × ω1, with
T ∈ L[a], such that:

x ∈ A ⇐⇒ ∃h ∈ ωω
1 ∀n (x↾n, h↾n) ∈ T

The proof of the theorem would follow the steps below:

(1) “Simplify” what it means for A to be Σ1
2(a).

(2) Find a tree T ′ on ω2 × ω1, with T ∈ L[a], such that:

x ∈ A ⇐⇒ ∃y ∈ ωω ∃h ∈ ωω
1 ∀n (x↾n, y↾n, h↾n) ∈ T ′

(3) Transform T ′ into a tree T on ω × ω1 with the desired
property.
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Proof, Step 1.

Let A ⊆ ωω be Σ1
2(a). In other words, there exists a Π1

1(a)-set
B ⊆ (ωω)2 such that:

x ∈ A ⇐⇒ ∃y ∈ ωω (x , y) ∈ B

By the Π1
1 normal form, there exists some tree U ⊆ Seq3 recursive

in a such that:

x ∈ A

⇐⇒ ∃y ∈ ωω U(x , y) is well-founded

⇐⇒ ∃y ∈ ωω ∃a rank function f : U(x , y) → ω1

⇐⇒ ∃y ∈ ωω ∃f : Seq → ω1 s.t. f ↾U(x , y) is order-preserving

Note that by the countability of U(x , y), we assumed that
ran(f ) ⊆ ω1.
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Proof, Step 1. (Cont.)

Fix some recursive enumeration Seq = {un : n < ω} such that
|un| ≤ n for all n. Given a function f with dom(f ) ⊆ ω, we define
f with dom(f ∗) ⊆ Seq by f ∗(un) := f (n). Using this enumeration
we get that:

x ∈ A ⇐⇒ ∃y ∈ ωω ∃h ∈ ωω
1 s.t. h∗↾U(x , y) is order-preserving
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Proof, Step 2.

We define a tree T ′ on ω2 × ω1 by “closing” the relation in the
previous slide under initial segments. More precisely, stipulate that:

(s, t, h) ∈ T ′ ⇐⇒ h∗↾Us,t is order-preserving

where:

Us,t := {u ∈ Seq : |u| ≤ |s| ∧ (s↾|u|, t↾|u|, u) ∈ U}

It’s easy to check that T ′ is a tree.
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Proof, Step 2. (Cont.)

Now observe that given x , y ∈ ωω, we have:

U(x , y) = {u ∈ Seq : (x↾|u|, y↾|u|, u) ∈ U}
=

{
u ∈ Seq : u ∈ Ux↾|u|,y↾|u|

}
=

⋃
n<ω

{u ∈ Seq : |u| ≤ n ∧ u ∈ Ux↾n,y↾n}

=
⋃
n<ω

Ux↾n,y↾n

Therefore, given x , y ∈ ωω and h ∈ ωω
1 , we have that:

h ∈ T ′(x , y) ⇐⇒ ∀n (x↾n, y↾n, h↾n) ∈ T ′

⇐⇒ ∀n (h↾n)∗↾Ux↾n,y↾n is order-preserving

⇐⇒ h∗↾U(x , y) is order-preserving
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Proof, Step 2. (Cont.)

Therefore:

x ∈ A ⇐⇒ ∃y ∈ ωω ∃h ∈ ωω
1 s.t. h∗↾U(x , y) is order-preserving

⇐⇒ ∃y ∈ ωω ∃h ∈ ωω
1 h ∈ T ′(x , y)

⇐⇒ ∃y ∈ ωω ∃h ∈ ωω
1 ∀n (x↾n, y↾n, h↾n) ∈ T ′

Hence this T ′ is the desired tree for step (2).
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Proof, Step 3.

We first transform the tree T ′ (on ω2 × ω1) into a tree T ′′ on
ω × (ω × ω1) by the map:

((s(0), . . . , s(n − 1)), (t(0), . . . , t(n − 1)), (h(0), . . . , h(n − 1)))

7→

((s(0), . . . , s(n − 1)), ((t(0), h(0)), . . . , (t(n − 1), h(n − 1)))

Clearly this map is recursive. This gives us:

x ∈ A ⇐⇒ ∃g ∈ (ω × ω1)
ω ∀n (x↾n, g↾n) ∈ T ′′

Using a definable correspondence between ω1 and ω× ω1, we get a
tree T such that:

x ∈ A ⇐⇒ ∃g ∈ ωω
1 ∀n (x↾n, g↾n) ∈ T

so A = p[T ]. Clearly T is constructible from a.
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We remark that if x ∈ A, so T (x) is ill-founded, then by reversing
the proof we have an algorithm which obtains a real y ∈ ωω

(dependent only on x and ω1) such that U(x , y) is well-founded.
This will be important in proving Shoenfield absoluteness theorem
later.
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Shoenfield Absoluteness Theorem

Theorem

If P is a Σ1
2(a) relation, then P is absolute for every inner models

M of ZF + DC such that a ∈ M. In particular, P is absolute for L.
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One may think that we can mimic the proof of Mostowski
absoluteness theorem to prove Shoenfield absoluteness theorem.
However, this does not work.

Suppose P is Σ1
1(a) and R ⊆ Seq2 is a recursive relation in which:

P(x) ⇐⇒ ∃y ∈ ωω ∀n R(x↾n, y↾n)

We defined the tree T ⊆ Seq2 by:

T := {(s, t) ∈ Seq2 : ∀n ≤ |s|R(s↾n, t↾n)}

then showed that:

P(x) ⇐⇒ T (x) is ill-founded
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We proved Mostowski absoluteness theorem as follows:

(1) If M |= P(x), then M |= T (x) is ill-founded, so [T (x)] ̸= ∅.
(2) If M |= ¬P(x), then M |= T (x) is well-founded, so there

exists a rank function on T .

We implicitly used the fact that the tree T , constructed in V and
in M, are the same.
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What about the tree T constructed such that P = p[T ] when P is
Σ1
2(a)?

We started with:

P(x) ⇐⇒ ∃y ∈ ωω U(x , y) is well-founded

where U ⊆ Seq3, and constructed a tree T on ω × ω1 such that
from U. We immediately see that the tree T constructed in M
need not be the same as that in V - for instance, we need not have
ωM
1 = ω1.

We thus have to work around this issue when proving Shoenfield
absoluteness theorem.
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Proof.

Suppose P is Σ1
2(a). As discussed before, there exists a tree

U ⊆ Seq3, recursive in a, such that:

P(x) ⇐⇒ ∃y U(x , y) is well-founded

This U is independent of the choice of models, i.e. we also have
that:

M |= P(x) ⇐⇒ ∃y ∈ MM |= U(x , y) is well-founded

For any relation R on ω<ω, the statement “R is well-founded” is
Π1
1 (Exercise), so it is absolute by Mostowski absoluteness

theorem. Therefore:

M |= P(x) ⇐⇒ ∃y ∈ M U(x , y) is well-founded

This immediately proves that if M |= P(x), then P(x) holds. It
remains to show the converse.
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Proof (Cont.)

Suppose P(x) holds. Let T be the tree on ω × ω1, constructed
from U in V , such that P = p[T ]. Therefore:

T (x) is ill-founded

Since well-foundedness is absolute, we have that:

M |= T (x) is ill-founded

Despite the fact that T ∈ M, we need not have M |= P = p[T ].
However, as remarked earlier, we can instead reverse the proof of
that P is ω1-Suslin to obtain a y ∈ (ωω)M such that:

M |= U(x , y) is well-founded

Hence M |= P(x).
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DC is used here for the fact that “R is well-founded” is a Π1
1

statement. For more details, see Lemma 25.9 of Jech.

However, all trees involved can in fact be canonically well-ordered,
as they are subsets of ω<ω. Consequently, we do not require DC to
choose an infinite branch when proving that “R is well-founded” is
Π1
1. Therefore, Shoenfield absoluteness theorem applies to models

of ZF, and its inner models of ZF.
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A few concluding remarks:

(1) Given x ⊆ ω, we say that x is Σ1
n(a) (resp. Π

1
n(a)) if the set

{ex}, where ex is the indicator function of the set x , is Σ1
n(a)

(resp. Π1
n(a)). Shoenfield absoluteness theorem implies that if

x is Σ1
2(a) or Π

1
2(a), then x ∈ L[a]. In particular, every Σ1

2/Π
1
2

real is constructible.

(2) There exists a model of set theory (without assuming large
cardinals) in which there is a non-constructible ∆1

3 real. Thus,
Shoenfield absoluteness theorem is the best possible ZFC
absoluteness theorem.
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The power of Shoenfield absoluteness lies in the following result.

Corollary

If P is a Σ1
2/Π

1
2 statement, and ZFC ⊢ P, then ZF ⊢ P.

Proof.

Let M be a model of ZF. Then LM is a model of ZFC. Since
ZFC ⊢ P, LM |= P. By Shoenfield absoluteness theorem, M |= P.
Since this holds for any model of ZF, by Gödel’s completeness
theorem, ZF ⊢ P.
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Many statements in “ordinary mathematics” are “simple enough”
to be of complexity Σ1

2/Π
1
2 or lower. Examples include:

(1) Brouwer fixed point theorem.

(2) Hanh-Banach theorem for separable spaces.

(3) The existence of algebraic closures for countable fields.

See more examples here.

https://mathoverflow.net/questions/74014/whats-a-magical-theorem-in-logic/74030#74030
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