NUS Reading Seminar Summer 2023 Session 4

Clement Yung

2 Jun 2023

Silver Indiscernibles

We begin by introducing indiscernibles, a concept in set theory with deep relations to various large cardinal axioms.

Definition

Let *I* be a linearly ordered subset of a model \mathfrak{A} . We say that *I* is *indiscernible over* \mathfrak{A} iff for every parameter free formula $\phi(x_1, \ldots, x_n)$, and every two increasing sequences $(\alpha_1, \ldots, \alpha_n)$, $(\beta_1, \ldots, \beta_n)$ in *I*, we have that:

$$\mathfrak{A} \models \phi[\alpha_1, \ldots, \alpha_n] \iff \mathfrak{A} \models \phi[\beta_1, \ldots, \beta_n]$$

Theorem (Silver)

If there exists a Ramsey cardinal, then:

- 1. If $\kappa < \lambda$ are uncountable cardinals, then $(L_{\kappa}, \in) \preceq (L_{\lambda}, \in)$.
- 2. The is a closed unbounded class of ordinals I, containing all uncountable cardinals, such that for every uncountable cardinal κ :
 - $|I \cap \kappa| = \kappa$.
 - $I \cap \kappa$ is indiscernible over (L_{κ}, \in) .
 - Every $a \in L_{\kappa}$ is definable in (L_{κ}, \in) from $I \cap \kappa$.

For instance, a measurable cardinal is a Ramsey cardinal. The class *I* is called the class of *Silver indiscernibles*.

Lemma

If the consequence of Silver's theorem holds, then for all uncountable cardinals κ , $(L_{\kappa}, \in) \preceq (L, \in)$.

Proof.

We wish to show that for all formulas φ and $a_1, \ldots, a_n \in L_{\kappa}$, we have that:

$$L \models \varphi[a_1, \ldots, a_n] \implies L_{\kappa} \models \varphi[a_1, \ldots, a_n]$$

Fix a formula φ , and suppose $L \models \varphi[a_1, \ldots, a_n]$. By reflection principle, there exists some $\lambda > \kappa$ such that $L_{\lambda} \models \varphi[a_1, \ldots, a_n]$. Since $(L_{\kappa}, \in) \preceq (L_{\lambda}, \in)$, $L_{\kappa} \models \varphi[a_1, \ldots, a_n]$.

 0^{\sharp} is a subset of ω which encodes exactly all formulas which L satisfies.

Let $a \in L$, so $a \in L_{\kappa}$ for some uncountable cardinal κ . Then there exists a formula ϕ and $\alpha_1 < \cdots < \alpha_n$ in $I \cap \kappa$ such that:

 $L_{\kappa} \models a$ is the unique x which $\phi(x, \alpha_1, \dots, \alpha_n)$ holds

This means that $a \in L_{\kappa}$ is "witnessed" by the fact that $L_{\kappa} \models \varphi[\alpha_1, \ldots, \alpha_n]$, where:

$$\varphi[\gamma_1,\ldots,\gamma_n] \leftrightarrow \exists ! x \, \phi(x,\gamma_1,\ldots,\gamma_n)$$

Thus we may just focus on formulas which take in indiscernibles as parameters.

Since $I \cap \kappa$ is indiscernible over L_{κ} , if $\kappa \geq \aleph_{\omega}$, then:

$$L \models \varphi[\alpha_1, \dots, \alpha_n] \iff L_{\kappa} \models \varphi[\alpha_1, \dots, \alpha_n]$$
$$\iff L_{\kappa} \models \varphi[\aleph_1, \dots, \aleph_n]$$
$$\iff L_{\aleph_{\omega}} \models \varphi[\aleph_1, \dots, \aleph_n]$$

Definition $0^{\sharp} = \{ \ulcorner \varphi \urcorner : L_{\aleph_{\omega}} \models \varphi[\aleph_1, \dots, \aleph_n] \}$

We abbreviate the conclusion of Silver's theorem as " 0^{\sharp} exists".

We discuss some consequences of the existence of 0^{\sharp} .

Fact

If 0^{\sharp} exists, then every uncountable cardinal is inaccessible in L. In particular, $V \neq L$.

Proof.

Since $L \models \aleph_1$ is regular, $L \models \aleph_\alpha$ is regular for all $\alpha \ge 1$ by indiscernibility. Similarly, $L \models \aleph_\omega$ is a limit cardinal, so $L \models \aleph_\alpha$ is a limit cardinal for all $\alpha \ge 1$ by indiscernibility.

Fact

If 0^{\sharp} exists, then $|V_{\alpha} \cap L| \leq |\alpha|$. In particular, $\mathcal{P}(\omega) \cap L$ is countable.

See Corollary 18.5 of Jech for a proof.

Analytic Determinacy

The existence of 0^{\sharp} has a game-theoretic formulation.

Theorem (Martin, Harrington)

In ZFC, the following are equivalent:

1. 0^{\sharp} exists.

Analytic determinacy (Σ₁¹-AD), i.e. every Σ₁¹ set is determined.

We first the easier direction $0^{\sharp} \rightarrow \Sigma_1^1$ -AD, and leave the converse for another day. We fix some Π_1^1 -set $A \subseteq \omega^{\omega}$. By Π_1^1 normal form theorem, there exists a recursive tree T on ω^2 such that:

$$x \in A \iff T(x)$$
 is well-founded

We consider the following attempt of a proof that Σ_1^1 -AD holds (in just ZFC).

Consider the game G where Player I chooses an integer n_{2k} , and Player II responds by choosing $(n_{2k+1}, m_{2k}, m_{2k+1})$, where they are all integers.

Turn		
1	<i>n</i> 0	(n_1, m_0, m_1)
2	<i>n</i> ₂	(n_3, m_2, m_3)
•••	••••	:

Define two reals $x(k) := n_k$ and $y(k) := m_k$. We assert that Player II wins iff $(x, y) \in [T]$.

Since $[\mathcal{T}]$ is a closed subset of $\omega^{\omega},$ it is determined by open determinacy.

If II has a winning strategy τ , then II can win G_A by playing G_A as if II is playing G. In other words, define the strategy σ by:

$$\sigma(n_0, n_2, \dots, n_{2k}) = n_{2k+1},$$

where $\tau(n_0, n_2, \dots, n_{2k}) = (n_{2k+1}, m_{2k}, m_{2k+1})$

Since τ is a winning strategy for II, $(x, y) \in [T]$. Then $y \in T(x)$, so T(x) is ill-founded, hence $x \notin A$.

What if I has a winning strategy τ ? We cannot use the same argument above, since, for instance, $\tau(n_1, m_0, m_1)$ may be different from $\tau(n_1, m'_0, m'_1)$ if $(m_0, m_1) \neq (m'_0, m'_1)$.

The idea using 0^{\sharp} is to modify *G* as follows: Instead of playing m_0, m_1, \ldots , we require II to play uncountable cardinals ξ_0, ξ_1, \ldots . We then use the indiscernibility of uncountable cardinals to patch the gap in the argument above.

Definition

The Kleene-Brouwer (KB) ordering is the ordering \leq on $\omega^{<\omega}$ as follows: For $s, t \in \omega^{<\omega}$, we have that $s \leq t$ iff $t \sqsubseteq s$, or if k is the least integer such that $s(k) \neq t(k)$, then s(k) < t(k).

Note that the KB ordering is a linear order on $\omega^{<\omega}$.

Lemma

A tree T is well-founded iff it is well-ordered by the KB well-ordering.

Sketch of Proof.

If T is ill-founded, then $s_0 \sqsubseteq s_1 \sqsubseteq \cdots$ gives us a \preceq -decreasing sequence.

If $s_0 \succeq s_1 \succeq \cdots$, then we obtain a branch on T as follows:

- 1. We have that $s_0(0) \ge s_1(0) \ge \cdots$ (ignoring the finitely many strings which $|s_n| = 0$). Let $k_0 := \min\{s_n(0) : n < \omega\}$, and let n_0 be the least integer such that $s_{n_0}(0) = k_0$.
- 2. We have that $s_{n_0}(1) \ge s_{n_0+1}(1) \ge \cdots$ (ignoring the finitely many strings which $|s_n| \le 1$). Let $k_1 := \min\{s_n(1) : n \ge n_0\}$, and let n_1 be the least integer such that $s_{n_1}(1) = k_1$.
- 3. Repeat to get a infinite sequence $(k_0, k_1, k_2, ...) \in [T]$.

We now instead fix some Σ_1^1 -set $A \subseteq \omega^{\omega}$. By Π_1^1 normal form theorem, there exists a recursive tree T on ω^2 such that:

$$x \notin A \iff T(x)$$
 is well-founded

We fix an enumeration Seq = { $t_n : n < \omega$ }. Given $s \in \omega^{<\omega}$, we introduce the notation:

$$T_{s} := \{t_{n} \in \omega^{<\omega} : n < |s| \land (s \upharpoonright |t_{n}|, t_{n}) \in T\}$$

Note that $T(x) = \bigcup_{n < \omega} T_{x \upharpoonright n}$ (a similar fact was proven last week).

0[#] and Indiscernibles 0000000

Let $\kappa := \aleph_{\aleph_1}$ - it is chosen so that every countable well-order can be embedded to the set of cardinals below κ .

Definition

Let $u \in \kappa^{<\omega}$, and let $s \in \omega^{<\omega}$. We say that u respects (T_s, \prec) if |u| = |s|, and that for all i, j < |u|: 1. If $t_i \notin T_s$, then u(i) = 0. 2. If $t_i, t_j \in T_s$ and $t_i \prec t_j$, then u(i) < u(j). Here, by u(t) we mean u(n), where t is the n^{th} element of T_s under \prec .

Definition

Let $h \in \kappa^{\omega}$, and let $T' \subseteq \omega^{<\omega}$ be a tree. We say that h respects (T, \prec) if for all i, j:

1. If
$$t_i \notin T$$
, then $u(i) = 0$.

2. If $t_i, t_j \in T$ and $t_i \prec t_j$, then u(i) < u(j).

Now define a tree U on $\omega\times\kappa$ as follows:

$$U := \{(s, u) : u \text{ respects } (T_s, \prec)\}$$

Since T is recursive (hence $T \in L$), $U \in L$. We see that:

$$x \notin A \iff T(x) \text{ is well-founded}$$
$$\iff T(x) \text{ is } \preceq \text{-well-ordered}$$
$$\iff \exists h \in \kappa^{\omega} h \text{ respects } (T(x), \prec)$$
$$\iff \exists h \in \kappa^{\omega} \forall n h \restriction n \text{ respects } (T_{x \restriction n}, \prec)$$
$$\iff \exists h \in \kappa^{\omega} \forall n (x \restriction n, h \restriction n) \in U$$
$$\iff U(x) \text{ is ill-founded}$$

We shall consider a game G' concerning U, and shows that if G' is determined, then so is the game G_A .

In G', Player I chooses an integer n_{2k} , and Player II responds by choosing $(n_{2k+1}, \xi_{2k}, \xi_{2k+1})$, where n_{2k+1} is an integer and ξ_{2k}, ξ_{2k+1} are ordinals $< \kappa$.

Turn	I	II
1	<i>n</i> 0	(n_1, ξ_0, ξ_1)
2	<i>n</i> ₂	(n_3, ξ_2, ξ_3)
•••		

Let $x(k) = n_k$ and $h(k) = \xi_k$. We assert that Player II wins iff (x, h) is a branch of U.

Lemma

G' is determined.

Proof.

The proof is basically the same as that of open determinacy, but for uncountable trees. Suppose I has no winning strategy.

- 1. For any n_0 that I plays, II can play some (n_1, ξ_0, ξ_1) such that I has not lost yet.
- 2. Similarly, on the k^{th} turn, II can play some $(n_{2k+1}, \xi_{2k}, \xi_{2k+1})$ such that II has not lost yet, regardless of what I responds with on the previous turn.

This is a winning strategy for II - if $(x, h) \in U$, then II must have played outside a branch somewhere in the middle of the game.

0[#] and Indiscernibles 0000000

Write the game G_A in the following manner:

Turn		
1	<i>n</i> 0	n_1
2	<i>n</i> ₂	<i>n</i> 3
•••	••••	••••

We have seen earlier that if **II has a winning strategy for** G', then II can play G_A as if II is playing G' and win.

If I has a winning strategy τ , then things are more complicated. Note that we can ensure that $\tau \in L$ (by examining the proof of open determinacy). We first introduce a notation.

Fix some $s \in \omega^{<\omega}$, and let $z \subseteq \kappa$ such that $|z| = |T_s|$. Let $u \in \kappa^{<\omega}$ be the (unique) sequence such that $\operatorname{ran}(u) \subseteq \{0\} \cup z$ and u respects (T_s, \prec) (u sends the n^{th} element of T^s to the n^{th} ordinal in z). Thus, we define:

$$\tau[s,z] := \tau(s,u)$$

where $\tau(s, u)$ represents the integer that I should play when s and u have been played so far in the game G'.

We now define a strategy σ for I in the game G_A as follows: If $s \in \omega^{<\omega}$ has been played so far, then:

$$\sigma(s) := \tau[s, \{\aleph_1, \aleph_2, \dots, \aleph_{|\mathcal{T}_s|}\}]$$

Clearly $\sigma \in L$.

Claim

 σ is a winning strategy for I in the game G_A .

Proof.

Suppose not. Let $x := \{n_0, n_1, n_2, ...\} \notin A$ be the real played in G_A , where $n_0, n_2, ...$ are played according to the strategy σ by I. Then T(x) is well-founded, so there exists a KB order-preserving map:

 $h: T(x) \rightarrow \{\lambda < \kappa : \lambda \text{ is an uncountable cardinal}\}$

In other words, $(x, h) \in [U]$.

Proof (Cont.)

Now consider I and II playing the game G' by stipulating that:

Turn	I	II
1	<i>x</i> (0)	(x(1), h(0), h(1))
2	x(2)	(x(3), h(2), h(3))
÷	÷	÷

We shall show that for all n, $\sigma(x \upharpoonright 2n) = \tau(x \upharpoonright 2n, h \upharpoonright 2n)$. This gives us the required contradiction, as τ being a winning strategy implies that $(x, h) \notin [U]$.

Proof (Cont.)

Let $z := \operatorname{ran}(h \upharpoonright 2n)$, which is a finite subset of κ . Note that $\tau[x \upharpoonright 2n, z] = \tau(h \upharpoonright 2n, h \upharpoonright 2n)$. We enumerate $z = \{\lambda_1, \ldots, \lambda_k\}$ in an increasing manner. By the indiscernibility of uncountable cardinals:

$$\tau(x|2n, h|2n) = \tau[x|2n, \{\lambda_1, \dots, \lambda_k\}]$$
$$= \tau[x|2n, \{\aleph_1, \dots, \aleph_k\}]$$
$$= \sigma(x|2n)$$

The converse is more difficult to prove, and uses admissible set theory and some recursion theory. It uses the following well-known deep result in set theory:

Theorem (Kunen)

 0^{\sharp} exists iff there exists a non-trivial elementary embedding $j: L \rightarrow L$.

In other words, for the converse we show that if Σ_1^1 -AD holds, then we can construct a non-trivial elementary embedding $j : L \to L$.