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Kripke-Platek Set Theory

Kripke-Platek (usually abbreviated as KP) set theory is a weakened
version of ZF set theory. It is closely related to descriptive set
theory and higher recursion theory.
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The Axiomatic system KP is the set of the following axioms:

1. Extensionality, Pairing and Union.

2. Regularity: For every formula ϕ(x) is a formula with y not
occurring free, then:

∃x ϕ(x) → ∃x [ϕ(x) ∧ ∀y ∈ x ¬ϕ(y)]

3. ∆0-Separation: For each ∆0-formula ϕ:

∀x∃y∀z [z ∈ y ↔ (z ∈ x ∧ ϕ(z))]

4. ∆0-Collection: For each ∆0-formula ϕ:

∀x [(∀y ∈ x ∃z ϕ(y , z)) → ∃u ∀y ∈ x ∃z ∈ u ϕ(y , z)]

KPω is used to denote KP+ Axiom of infinity (in the usual ZF
sense).
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Admissible set theory thus studies models of KP. These models
need not be ω-models - that is, while a model A of KP may
contain a set x ∈ A such that:

A |= “(x ,∈) |= PA”

we need not have x = ω (where ω is taken in the universe). In
other words, (x ,∈) is a non-standard model of arithmetic.
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If ω ∈ A, then A has a standard model of arithmetic, so we say
that A is an ω-model. Note that if A |= KP and A is well-founded,
then A is an ω-model - it’s transitive collapse has a copy of ω.

A model being an ω-model is helpful as:

Lemma

If A is an ω-model of KP, x ∈ A and ϕ(x) is an arithmetical
formula, then:

ϕ(x) ⇐⇒ A |= ϕ(x)
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∆1 Properties of KP

KP models in fact satisfy a stronger variant of separation axiom.

Proposition

KP ⊢ ∆1-separation. That is, if φ is a ∆1-formula, then:

KP ⊢ ∀x∃y∀z [z ∈ y ↔ (z ∈ x ∧ φ(z))]
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Proof.

Work in a model of KP. We wish to show that for any set x , there
exists some set y such that:

∀z [z ∈ y ↔ (z ∈ x ∧ φ(z))]

Let ϕ, ψ be ∆0-formulas such that for all z , φ(z) iff ∃w ϕ(z ,w) iff
¬∃w ψ(z ,w). In other words, we have that:

∀z [∃w ϕ(z ,w) ↔ ¬∃w ψ(z ,w)]

Taking → in particular, we have that:

∀z ∃w [ϕ(z ,w) ∨ ψ(z ,w)]
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Proof (Cont.)

Then in particular:

∀z ∈ x ∃w [ϕ(z ,w) ∨ ψ(z ,w)]

Applying ∆0-collection, we obtain some u such that:

∀z ∈ x ∃w ∈ u[ϕ(z ,w) ∨ ψ(z ,w)]

Now let:

y := {z ∈ x : ∃w ∈ u ϕ(z ,w)}

This is a well-defined set as “∃w ∈ u ϕ(z ,w)” is ∆0, and we have
∆0-separation. Then this set y works.
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Proposition

KP ⊢ Σ1-collection. That is, if φ is a Σ1-formula, then:

KP ⊢ ∀x [(∀y ∈ x ∃z ϕ(y , z)) → ∃u ∀y ∈ x ∃z ∈ u ϕ(y , z)]
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Proof.

Suppose φ(y , z) iff ∃w ϕ(y , z ,w), where ϕ is ∆0. Fix some set x ,
and suppose:

∀y ∈ x ∃z ∃w ϕ(y , z ,w)

Define a formula ψ by stipulating that:

ψ(y , v) ⇐⇒ v = {z ,w} ∧ ϕ(y , z ,w)

This is ∆0, as “v = {z ,w}” is ∆0 (and it makes sense as KP has
the pairing axiom). Then the first statement implies that:

∀y ∈ x ∃u ψ(y , u)
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Proof (Cont.)

By ∆0-Collection, there exists a set u such that:

∀y ∈ x ∃v ∈ u ψ(y , v)

=⇒ ∀y ∈ x ∃v ∈ u[v = {z ,w} ∧ ϕ(y , z ,w)]

=⇒ ∀y ∈ x∃z ∈
⋃

u ∃w ϕ(y , z ,w)

=⇒ ∀y ∈ x∃z ∈
⋃

u φ(y , z)

so collection holds for φ.
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Ordinals in KP models

If A is a transitive model of KP, then A ∩ORD is an initial
segment of ORD, and is hence an ordinal. However, A need not
even be well-founded (the ordinals in A need not even be
well-ordered!), so we need to adopt a different notion of
“A ∩ORD”.

Notation

Let A |= KP. Then:

s(A) := sup{otp(S) : S is an initial segment of ORDA

∧ S is well-ordered}
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Example

If A is not an ω-model, then s(A) = ω. This is because KP is
strong enough to prove that 0, 1, 2, 3, · · · ∈ A, but ω /∈ A.

But what if A is an ω-model?
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Notation

Given a tree T and s ∈ ω<ω, we define:

T/s := {t ∈ ω<ω : s⌢t ∈ T}

Theorem

If A is an ω-model for KP and T ∈ A is a well-founded tree, then
the height function:

s 7→ ∥T/s∥

is in A.
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As a consequence, we have that:

Corollary

If A is an ω-model of KPω, then all x ∈ (ωω)A, ωx
1 ≤ s(A). In

particular, ωCK
1 ≤ s(A).

Proof.

Let x ∈ (ωω)A. For each α < ωx
1 , let T be a well-founded tree,

recursive in x , such that ∥T∥ ≥ α. Since x ∈ A and recursive
functions are ∆1 functions of arithmetic, it is a ∆0 function (of set
theory), so by ∆0-separation we have that T ∈ A. By the theorem,
the height function s 7→ ∥T/s∥ is in A, and in particular ∥T∥ ⊆ A
(as range of a function is ∆0). Therefore ω

x
1 ≤ s(A).
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We now prove the theorem. Recall that since “T is well-founded”
is Π1

1, the well-foundedness of T is absolute across all models of
sufficiently large fragment of ZF to prove that well-founded trees
have a rank function. This would allow us to prove the theorem
with an easy induction. Unfortunately, KP is not enough to prove
such a statement, so we can’t use that here.

We need a cleverer approach to prove this theorem.
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Proof.

We induct on ∥T∥, and assume that a height function exists for all
subtrees T/s, where s ̸= ∅. We define a formula ϕ by:

ϕ(f ,T ) ⇐⇒ f is a height function for T

ϕ is a ∆0 formula (Exercise). Applying the induction hypothesis,
we have that:

A |= ∀s ∈ T ∃f [s = ∅ ∨ ϕ(f ,T/s)]

Applying ∆0-collection, we obtain a set x ∈ A such that:

A |= ∀s ∈ T ∃f ∈ x [s = ∅ ∨ ϕ(f ,T/s)]
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Proof (Cont.)

Let a := T × T ×
⋃⋃⋃

x . a ∈ A as KP models are closed under
finite Cartesian products (Exercise). Note that if f ∈ x , then
ran(f ) ⊆

⋃⋃⋃
x . By ∆0-separation, we may define the function

F (s, t) by:

F := {(s, t, α) ∈ a : A |= ∃f ∈ x [ϕ(f ,T/s) ∧ f (t) = α]}

Note that for all s, t such that s⌢t ∈ T , we have that:

F (s, t) = f (t) = ∥T/(s⌢t)∥

where f is the height function for the tree T/s.
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Proof.

Let b := ran(F ) ∩ORD, which is a well-defined set in A as range
and ORD are ∆0. We see that:

sup b = sup(ran(F ) ∩ORD)

= sup
s ̸=∅

∥T/s∥

= ∥T∥

Thus, we let α0 := sup b =
⋃
b. We may use ∆0-separation again

to define a function G such that:

G (s) :=

{
α0, if s = ∅
F ((k), t), if s = (k)⌢t

Then G is the height function of T , as desired.
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KP and constructibility

Suppose G is a function on some transitive class A. Recursion
theorem asserts that there exists a function F on A such that for
all x ∈ A:

F (x) = G (F ↾x)

(See Theorem 6.5 of Jech). Using only ∆1-separation and
Σ1-collection, we can get the following theorem of KP:

Theorem (Krivine, Σ1-Recursion theorem)

If G is a Σ1-function on some transitive class A, then there exists a
Σ1-function F on A such that for all x ∈ A:

F (x) = G (F ↾x)
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It turns out that Σ1-recursion is sufficient for us to define the
function:

α 7→ Lα

That is, KP is sufficient to define the constructible hierarchy. This
is done with the help of Gödel operations - see more at §12 of Jech.

We get the following result:

Theorem

If A is a model of KPω, then:

{x ∈ A : A |= x ∈ L}

is a model of KP + V = L.
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KP is also sufficient to prove the well-known condensation lemma:

Theorem

If A is a transitive model for KP + V = L, then A = Lα for some
ordinal α.
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A model of KP

We’ve seen that if A is an ω-model of KP, then s(A) ≥ ωCK
1 .

Theorem

There is an ω-model A of KP with s(A) = ωCK
1 .
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We shall borrow a few facts from the theory of hyperarithmetic
sets. Define:

WFG := {⌜T⌝ : T is a recursive tree}

Fact

WFG is a Π1
1, but not Σ

1
1, subset of ω.

Fact

If x ⊆ ω is not ∆1
1, then there exists an ω-model A of KPω such

that x /∈ A.
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Lemma

Assume ωCK
1 ⊆ A. For all α < ωCK

1 , there exists some nα < ω such
that if T ∈ A is a recursive tree of height α, then its height
function is in LAα+nα .

The assumption “ωCK
1 ⊆ A” is to ensure that the set LAα makes

sense for all α < CK.
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Proof.

We first note that since T is recursive, there exists a formula ϕ,
∆1 in arithmetic (so ∆0), such that T = {s ∈ ω<ω : ϕ(s)}, so
T ∈ Lω+1.

We induct on α. We recap the proof that ω-models of KP contains
the height function of T . We first observe that there exists some
n′α < ω: such that α+ n′α = supγ<α γ + nγ . The induction
hypothesis precisely asserts that

A |= ∀s ∈ T ∃f ∈ Lα+n′α [s ̸= ∅ ∨ ϕ(f ,T/s)]

where ϕ(f ,T/s) is the ∆0 formula asserting that f is the height
function of T/s.
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Proof (Cont.)

Let a := T × T ×
⋃⋃⋃

Lα+n′α , and by ∆0-separation we may
define the function:

F := {(s, t, ξ) ∈ a : A |= ∃f ∈ Lα+n′α [ϕ(f ,T/s) ∧ f (t) = ξ]}

We have that T ∈ Lα+n′α and
⋃⋃⋃

Lα+n′α ∈ Lα+n′α+4, so
F ∈ Lα+n′α+5. We may then define G , the height function of T ,
from F and a, so G ∈ Lα+n′α+6. Let nα := n′α + 6, and the
induction is complete.
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Proof of Theorem.

Let A be an ω-model of KP such that WFG /∈ A. We wish to show
that ωCK

1 /∈ A. Suppose otherwise. Recall that a tree has a height
function iff it is well-founded (in the universe). We may define
LA
ωCK
1

∈ A, and we see that:

x ∈ WFG

⇐⇒
x ∈ ω ∧ ∃f ∈ LωCK

1 +4 ∃T ∈ Lω+1[x = ⌜T⌝ ∧ φ(f ,T )]

The formula on RHS is ∆0, so WFG ∈ A, a contradiction.
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Well-founded models of KP

Here are some heads up of what we will be covering after summer
school.

We say that an element x ∈ A is well-founded if there does not
exist an E -decreasing sequence below x . Consider the following
way to extract the well-founded part of A:

B := {x ∈ A : x is well-founded}

and consider the structure B := (B,E ). By construction, B is a
well-founded structure.
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Theorem

B is a well-founded ω-model of KP.

Corollary

LωCK
1

is a well-founded ω-model of KP.

I plan to prove these two results after summer school.
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Admissible ordinals

Models of KP of the form Lα are of much interest, and are very
important in the proof of Σ1

1-AD → 0♯ exists.

Definition

A countable ordinal α is admissible if Lα |= KP.

Theorem

α is admissible iff α = ωx
1 for some real x .
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