

NUS Reading Seminar Summer 2023 Session 6

Clement Yung

21 Jul 2023

Kripke-Platek Set Theory

Recall that the Kripke-Platek KP set theory consists of the axioms of extensionality, pairing, union, regularity, Δ_0 -separation and Δ_0 -collection.

Lemma

Both Δ_1 -separation and Σ_1 -collection hold in KP.

Ordinals

Let \mathfrak{A} be a model of KP. **ORD**^{\mathfrak{A}} may not be a well-order (from the universe's perspective), but it has an infinite initial segment - i.e. $\omega^{\mathfrak{A}}$. Note that $\omega^{\mathfrak{A}}$ need not be an element of \mathfrak{A} !

Notation

Let $\mathfrak{A} \models \mathsf{KP}$. Then: $s(\mathfrak{A}) := \sup\{\mathsf{otp}(S) : S \text{ is an initial segment of } \mathbf{ORD}^{\mathfrak{A}}$ $\land S \text{ is well-ordered}\}$

We have $s(\mathfrak{A}) > \omega$ iff $\omega^{\mathfrak{A}} \in \mathfrak{A}$ iff \mathfrak{A} is a standard model. Note that a standard model need not be well-founded.

Models of KP

We previously "proved" the following theorem:

Theorem

There is an ω -model \mathfrak{A} of KP with $s(\mathfrak{A}) = \omega_1^{\mathsf{CK}}$.

 $\mathfrak A$ may be standard, but how do we get well-founded models?

Let $\mathfrak{A} = (A, E)$ be a model of KP. Recall that models of KP satisfies the following Σ_1 -Recursion theorem:

Theorem (Krivine, Σ_1 -Recursion theorem)

If G is a Σ_1 -function on some transitive class A, then there exists a Σ_1 -function F on A such that for all $x \in A$:

 $F(x) = G(F \upharpoonright x)$

We can then (internally) define a Σ_1 rank function in the model.

We say that an element $x \in A$ is *well-founded* if there does not exist an *E*-decreasing sequence below x. Consider the following way to extract the well-founded part of \mathfrak{A} :

 $B := \{x \in A : x \text{ is well-founded}\}$

and consider the structure $\mathfrak{B} := (B, E)$. Note that if x is a well-founded, then $\rho(x) < \sigma$ for all non-standard ordinals σ .

Theorem

 $\mathfrak{B} = (B, E)$ is a well-founded ω -model of KP.

Proof.

Extensionality, pairing, union, and Δ_0 -separation are easy to check (as all sets involved are well-founded). For regularity, note that if $x \in B$ is such that $\phi(x)$, then there's an *E*-minimum element in trcl($\{x\}$) that satisfies $\phi(x)$. Then that element witnesses regularity for ϕ . It remains to show that Δ_0 -collection holds. We shall assume that $\mathfrak{A} \neq \mathfrak{B}$, for otherwise the result follows immediately.

Proof.

Let ϕ be Δ_0 . Fix any $x \in B$, and suppose $\mathfrak{B} \models \forall y \in x \exists z \phi(y, z)$. Let $\rho \in A$ be the rank function for \mathfrak{A} . Fix any $y \in x$, and let $z \in B$ such that $\mathfrak{B} \models \phi(y, z)$. By the absoluteness of Δ_0 -formulas, $\mathfrak{A} \models \phi(x, y)$. Since y is well-founded, $\rho(y) < \sigma$ for some fixed non-standard ordinal $\sigma \in A$. Thus:

$$\mathfrak{A} \models \forall y \in x \, \exists z [\phi(y, z) \land \rho(z) < \sigma)]$$

Note that $\rho(z) < \sigma$ is Δ_1 , as ρ is a Σ_1 function and so both $\rho(z) < \sigma$ and $\rho(z) \ge \sigma$ are Σ_1 . By Δ_1 -collection in \mathfrak{A} , we have some $u' \in A$ such that:

$$\mathfrak{A}\models orall y\in x\,\exists z\in u'[\phi(y,z)\wedge
ho(z)<\sigma)]$$

Proof (Cont.)

The entire formula above is Δ_1 , so by Δ_1 -separation of \mathfrak{A} , we have that:

$$X := \{\tau < \omega : \mathfrak{A} \models \forall y \in x \, \exists z \in u'[\phi(y, z) \land \rho(z) < \tau)]\}$$

is a well-defined element of A. X contains all non-standard ordinals of \mathfrak{A} , so $\sigma_0 := \inf X$ is a standard ordinal (for otherwise σ_0 is the least non-standard ordinal).

Proof (Cont.)

Now let:

$$u := \{ w \in u' : \mathfrak{A} \models \rho(w) \le \sigma_0 \}$$

u is a well-defined element of *A* by Δ_1 -separation. Since $\rho(u) \leq \sigma_0 + 1$, $u \in B$. We see that *u* witnesses Δ_0 -replacement in \mathfrak{B} for ϕ : For any $y \in x$, there exists some well-founded $z \in u$ such that $\phi(y, z)$ holds as $\rho(z)$ is below every non-standard ordinal. Note that if $\omega^{\mathfrak{A}}$ exists, then it is well-founded so $\omega^{\mathfrak{B}} = \omega^{\mathfrak{A}}$ exists.

Corollary

$$L_{\omega_1^{CK}}$$
 is an ω -model for KP.

Proof.

Let \mathfrak{A} be an ω -model of KP with $s(\mathfrak{A}) = \omega_1^{\mathsf{CK}}$. Then $L^{\mathfrak{A}}$ is an ω -model of KP + V = L. But by the absoluteness of constructibility and Gödel's condensation lemma, we must have $L^{\mathfrak{A}} = L_{\omega_1^{\mathsf{CK}}}$.

Admissible ordinals

Definition

Let $x \in \omega^{\omega}$. A countable ordinal α is *admissible in x* if $L_{\alpha}[x] \models \text{KP. } \alpha$ is *admissible* if it is admissible in (0, 0, 0, ...).

We just proved that ω_1^{CK} is an admissible ordinal. Since if $L_{\alpha} \models \mathsf{KP}$, $s(L_{\alpha}) = \alpha \ge \omega_1^{\mathsf{CK}}$, we have that ω_1^{CK} is the least admissible ordinal.

Theorem (Sacks)

A countable ordinal α is admissible in x iff $\alpha = \omega_1^y$ for some $x \leq_T y$.

The proof uses a tool called $\epsilon\sigma$ -logic, which I shall not discuss.

Recall the following theorem:

Theorem

The following are equivalent:

- 1. Analytic determinacy (Σ_1^1 -AD).
- 2. 0^{\sharp} exists.
- 3. There exists an non-trivial elementary embedding $j : L \rightarrow L$.

We proved $(2) \Longrightarrow (1)$, and $(2) \iff (3)$ is a deep theorem in set theory. We will begin setting up the proof of $(1) \Longrightarrow (3)$.

Friedman's set

The *Friedman's set* is a set $F \subseteq \omega^{\omega}$ with some special properties. We will use F to prove Σ_1^1 -AD implies 0^{\sharp} as follows:

- 1. F is Σ_1^1 .
- 2. F intersects every Turing cone.
- 3. By Σ_1^1 -AD, every Σ_1^1 set either contains a cone or is disjoint from a cone. Thus, F contains a cone C.
- 4. If $x \in C \subseteq F$, then ω_1^x is a cardinal in *L*.
- 5. If every admissible ordinal is a cardinal in L, then $j: L \rightarrow L$ exists.

Definition

The Friedman's set is the set defined by:

$$\mathsf{F} := \{ x \in \omega^{\omega} : \forall \alpha < \omega_1^x \, \forall y \subseteq \alpha [y \in \mathcal{L}_{\omega_1^x} \to y \in \mathcal{L}_{\alpha+3}[x]] \}$$

Heuristically, Friedman's set is the set of reals which speeds up constructibility.

Lemma		
F is Σ^1_1 .		

The proof is a technical (but not difficult) analysis of hyperarithmetic set theory, so we shall take this fact for granted.

Lemma

F intersects every Turing cone. That is, for all x there exists some $y \in F$ such that $x \leq_T y$.

Well-Founded Models of KP

Proof.

Fix any $x \in \omega^{\omega}$. Let \mathfrak{A} be an ω -model $\mathfrak{A} = (A, E)$ of KP + "All sets are countable", with $x \in \mathfrak{A}$. By taking the ultrapower using a non-principal ultrafilter over $\omega^{\mathfrak{A}}$, we may assume that \mathfrak{A} is not well-founded. Note that x is in the ultrapower (or at least there is a real Turing equivalent to x).

Let $\sigma \in \mathbf{ORD}^{\mathfrak{A}}$ be non-standard. Since $L_{\sigma}^{\mathfrak{A}} \in \mathfrak{A}$, $\mathfrak{A} \models L_{\sigma}$ is countable, so there exists some real $y \in A$ that codes a relation $R \in A$ on $\omega^{\mathfrak{A}}$, such that $(\omega, R) \cong (L_{\sigma}^{\mathfrak{A}}, E)$. We shall show that $z := x \oplus y \in F$, the Friedman's set.

Well-Founded Models of KP

Proof (Cont.)

Let $\alpha < \omega_1^z$, and let $w \subseteq \alpha$. Since $z \in A$, all trees recursive in z are in A, so $s(\mathfrak{A}) \ge \omega_1^z$. This implies that $\omega_1^z \le \sigma$, so:

1. α is a standard ordinal in \mathfrak{A} , so $\alpha < \sigma$. In particular, $\mathfrak{A} \models \alpha \in L_{\sigma}$.

2.
$$\mathfrak{A} \models w \in L_{\omega_1^z} \subseteq L_{\sigma}$$
.

Using the relation R, we obtain two integers n_{α} , n_{w} in \mathfrak{A} such that:

1.
$$x_{\alpha} := \{n : n R n_{\alpha}\}$$
 is isomorphic to (α, E) .

2. $x_w := \{n : n R n_w\}$ is isomorphic to (w, E).

Proof (Cont.)

Let $i: x_{\alpha} \to \alpha$ be the order isomorphism. We see that $i \in L_{\alpha+3}[z]$: x_{α} is a subset of $\omega^{\mathfrak{A}}$ which is definable from α and y, so $x_{\alpha} \in L_{\alpha+1}[z]$. Then i can be constructed in the level $L_{\alpha+3}[z]$. Since $x_{w} \in L_{\omega+1}[y] \subseteq L_{\omega+1}[z]$, we have that $w = i[x_{w}] \in L_{\alpha+3}[z]$.

By the same argument as Martin's cone theorem, F contains a cone.

Well-Founded Models of KP

Let $x \in \omega^{\omega}$ such that $C_x \subseteq F$. Then for all $z \in C_x \subseteq F$ implies that:

$$\forall \alpha < \omega_1^z \, \forall y \subseteq \alpha[y \in L_{\omega_1^z} \to y \in L_{\alpha+3}[z]]$$

Lemma

For any $z \in C_x \subseteq F$:

$$\forall \alpha < \omega_1^z \, \forall y \subseteq \alpha[y \in L \to y \in L_{\omega_1^z}[z]]$$

We will take this lemma for granted.

Lemma

If $C \subseteq F$ is a Turing cone and $x \in C$, then ω_1^x is a cardinal in L.

Proof.

Fix $x \in C \subseteq F$, and suppose ω_1^x is not a cardinal in *L*. Let $\alpha < \omega_1^x$ such that:

$$L \models |\alpha| = |\omega_1^x|$$

Recall that ZFC proves that this implies that there exists a well-order \leq on α such that (α, \leq) has order-type ω_1^{α} . Let Γ : **ORD** × **ORD** be the canonical pairing function. Then $\Gamma[\leq] \subseteq \alpha^2 < \omega_1^x$ (note that if there exists a tree recursive in x of height α , then one may construct a tree recursive in x of height α^2).

Well-Founded Models of KP

Proof (Cont.)

By the previous lemma, $\leq \in L_{\omega_1^x}[x]$. We recall the following theorem we proved before summer school:

Theorem. If $\mathfrak{A} = (A, E)$ is an ω -model of KP and $T \in \mathfrak{A}$ is a well-founded tree, then the height function $s \mapsto ||T/s||$ is in A. In particular, $T \in A$.

Since α^2 is countable, \leq defines a countable, well-founded tree of height ω_1^x (by using the bijection between α^2 and ω). Since ω_1^x is admissible in x by Sack's theorem, $L_{\omega_1^x}[x] \models \text{KP}$, so applying the theorem we have that $\omega_1^x \in L_{\omega_1^x}[x]$, a contradiction.

Coupled with Sack's theorem, the lemma can be rephrased as follows: Suppose $C_x \subseteq F$ with apex $x \in \omega^{\omega}$. If α is a countable ordinal admissible in x, then α is a cardinal in L.

Lemma

In fact, every ordinal admissible in x, countable or not, is a cardinal in L.

We'll prove this next week.