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Recall that the Kripke-Platek KP set theory consists of the axioms
of extensionality, pairing, union, regularity, Ag-separation and
Ag-collection.

Both A;1-separation and ¥1-collection hold in KP.
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Ordinals

Let 2 be a model of KP. ORD* may not be a well-order (from
the universe's perspective), but it has an infinite initial segment -
i.e. w¥. Note that w® need not be an element of Al

Notation

Let A = KP. Then:

s(A) := sup{otp(S) : S is an initial segment of ORD*
A S is well-ordered}

We have s(2) > w iff w® € A iff A is a standard model. Note that
a standard model need not be well-founded.



We previously “proved” the following theorem:

There is an w-model A of KP with s(A) = wK.

21 may be standard, but how do we get well-founded models?
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Let 20 = (A, E) be a model of KP. Recall that models of KP
satisfies the following ¥ 1-Recursion theorem:

Theorem (Krivine, ¥1-Recursion theorem)

If G is a ¥1-function on some transitive class A, then there exists a
> 1-function F on A such that for all x € A:

We can then (internally) define a X; rank function in the model.
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We say that an element x € A is well-founded if there does not
exist an E-decreasing sequence below x. Consider the following
way to extract the well-founded part of :

B = {x € A: x is well-founded}

and consider the structure B := (B, E). Note that if x is a
well-founded, then p(x) < o for all non-standard ordinals o.



B = (B, E) is a well-founded w-model of KP.
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Proof.

Extensionality, pairing, union, and Ag-separation are easy to check
(as all sets involved are well-founded). For regularity, note that if
x € B is such that ¢(x), then there's an E-minimum element in
trcl({x}) that satisfies ¢(x). Then that element witnesses
regularity for ¢. It remains to show that Ag-collection holds. We
shall assume that 24 £ B, for otherwise the result follows
immediately.
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Proof.

Let ¢ be Ag. Fix any x € B, and suppose B = Vy € x 3z ¢(y, z).
Let p € A be the rank function for 2. Fix any y € x, and let z € B
such that B |= ¢(y, z). By the absoluteness of Ag-formulas,

A E ¢(x,y). Since y is well-founded, p(y) < o for some fixed
non-standard ordinal o € A. Thus:

A= Vy € x3z[d(y, 2) A p(z) < 0)]

Note that p(z) < o is A1, as p is a X1 function and so both
p(z) < o and p(z) > o are ¥1. By Aj-collection in 2, we have
some u’ € A such that:

A EVy e xIz e oy, z) Ap(z) < 0)]
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Proof (Cont.)
The entire formula above is A1, so by Aj-separation of 2, we have
that:

X:={r<w:AEVyexIzed[d(y,z)Ap(z) <71)]}

is a well-defined element of A. X contains all non-standard
ordinals of 2, so op := inf X is a standard ordinal (for otherwise oy
is the least non-standard ordinal).
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Proof (Cont.)

Now let:
u:={wed AEpw) <oy}

u is a well-defined element of A by Aj-separation. Since

p(u) < o9+ 1, ue B. We see that u witnesses Ag-replacement in
B for ¢: For any y € x, there exists some well-founded z € u such
that ¢(y, z) holds as p(z) is below every non-standard ordinal.
Note that if w® exists, then it is well-founded so w® = w*

exists. O
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Corollary

L e« is an w-model for KP.

Proof.

Let 2A be an w-model of KP with s(A) = wt. Then L* is an
w-model of KP +V = L. But by the absoluteness of constructibility
and Godel's condensation lemma, we must have [% = waK- O
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Let x € w®. A countable ordinal « is admissible in x if
Ly[x] = KP. « is admissible if it is admissible in (0,0,0,...).

We just proved that w1CK is an admissible ordinal. Since if
Lo, = KP, s(Ly) = a > w$X, we have that w{K is the least
admissible ordinal.



A countable ordinal o is admissible in x iff « = wi’ for some
x<ry.

The proof uses a tool called eo-logic, which | shall not discuss.
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Recall the following theorem:

Theorem

The following are equivalent:
1. Analytic determinacy (X1-AD).
2. 0 exists.

3. There exists an non-trivial elementary embedding j : L — L.

We proved (2) = (1), and (2) <= (3) is a deep theorem in set
theory. We will begin setting up the proof of (1) = (3).
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Friedman's set

The Friedman'’s set is a set F C w®“ with some special properties.
We will use F to prove Z%—AD implies 0% as follows:

1. Fis 1.
2. F intersects every Turing cone.

3. By Z1-AD, every ¥} set either contains a cone or is disjoint
from a cone. Thus, F contains a cone C.

4. If x € C CF, then wyf is a cardinal in L.

5. If every admissible ordinal is a cardinal in L, then j: L — L
exists.
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Definition
The Friedman's set is the set defined by:

Fi={xeuw”:Va<wiVy Caly € Ly =y € Lay3[x]]}

Heuristically, Friedman’s set is the set of reals which speeds up
constructibility.



Fisxl

The proof is a technical (but not difficult) analysis of
hyperarithmetic set theory, so we shall take this fact for granted.



F intersects every Turing cone. That is, for all x there exists some
y € F such that x <t y.
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Proof.

Fix any x € w®”. Let 2 be an w-model A = (A, E) of KP + "All
sets are countable”, with x € 2. By taking the ultrapower using a
non-principal ultrafilter over w®, we may assume that 2 is not
well-founded. Note that x is in the ultrapower (or at least there is
a real Turing equivalent to x).

Let o € ORD? be non-standard. Since [% € 2, A = L, is
countable, so there exists some real y € A that codes a relation
R € Aon w¥, such that (w, R) = (L, E). We shall show that
z:=x®y €F, the Friedman's set.
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Proof (Cont.)
Let o < wf, and let w C a. Since z € A, all trees recursive in z
are in A, so s() > wf. This implies that wi < o, so:
1. « is a standard ordinal in 2, so a < o. In particular,
AE=ace L.
2. AE=we Ly C L,

Using the relation R, we obtain two integers n,, ny,, in 2 such that:

1. xo :={n:nRny} is isomorphic to (o, E).

2. xy :={n:nRny} is isomorphic to (w, E).
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Proof (Cont.)

Let i : xo — « be the order isomorphism. We see that i € L,3[z]:
X is a subset of w® which is definable from « and y, so

Xo € La41[2]. Then i can be constructed in the level L,3[z].
Since xy € Lyt1[y] C Ly+1[z], we have that

w = i[xw] € Lo43[z]. O

By the same argument as Martin's cone theorem, F contains a
cone.
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Let x € w* such that C, C F. Then for all z € C, C F implies
that:

Va <wiVy Caly € Luz — y € Lays[Z]]

Lemma
For any z € C, C F:

Va<wiVy Caly € L—y e L:[Z]

We will take this lemma for granted.



If C CF is a Turing cone and x € C, then wi is a cardinal in L.
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Proof.

Fix x € C C F, and suppose wf is not a cardinal in L. Let v < wf
such that:

L Jaf = |w1]

Recall that ZFC proves that this implies that there exists a
well-order < on « such that (a, <) has order-type w{*. Let

I : ORD x ORD be the canonical pairing function. Then

M=] C a? < wy (note that if there exists a tree recursive in x of
height «, then one may construct a tree recursive in x of height
a?).
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Proof (Cont.)

By the previous lemma, <€ L,x[x]. We recall the following
theorem we proved before summer school:

Theorem. If 2A = (A, E) is an w-model of KP and T € 2 is a
well-founded tree, then the height function s+ || T/s]|| is in A. In
particular, T € A.

Since a2 is countable, < defines a countable, well-founded tree of
height wy (by using the bijection between a2 and w). Since wY is
admissible in x by Sack'’s theorem, L x[x] = KP, so applying the
theorem we have that wy € L,x[x], a contradiction. O
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Coupled with Sack's theorem, the lemma can be rephrased as
follows: Suppose Cy C F with apex x € w®. If v is a countable
ordinal admissible in x, then « is a cardinal in L.

Lemma

In fact, every ordinal admissible in x, countable or not, is a cardinal
in L.

We'll prove this next week.
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