$\begin{array}{c} \Sigma_1^1\text{-}\mathsf{AD} \to \mathbf{0}^{\sharp} \text{ exists} \\ \text{oooooooooo} \end{array}$

Equivalences of 0[#]

NUS Reading Seminar Summer 2023 Session 7

Clement Yung

28 Jul 2023

Friedman Set

Let F denote the Friedman's set, and let $C \subseteq F$ be a cone.

Lemma

If $x \in C \subseteq F$ and α is admissible in x, then α is a cardinal in L.

Last week, we proved this in the case where α is countable. Note that every uncountable regular cardinal is admissible in x for any $x \in \omega^{\omega}$.

Proof.

Let α be an uncountable ordinal admissible in x. Since $x \in C \subseteq F$, $C_x \subseteq F$. Observe that:

$$C_x \subseteq \mathsf{F} \iff \forall y \in \omega^{\omega}[x \leq_{\mathrm{T}} y \to y \in \mathsf{F}]$$

Since F is Σ_1^1 , the above statement is $\Pi_2^1(x)$. By Shoenfield's absoluteness, " $C_x \subseteq F$ " is absolute across all models of ZF containing x.

Proof (Cont.)

Let \mathbb{P} be any forcing notion that collapses α to a countable ordinal (for example, $\mathbb{P} = \text{Coll}(\omega, |\alpha|^+)$). Let G be \mathbb{P} -generic over V. Then $\alpha \in V[G]$ is a countable ordinal. By the absoluteness of constructibility, $L_{\alpha}^{V[G]}[x] = L_{\alpha}^{V}[x]$ is a model of KP. Therefore, α is admissible in x, so by the theorem in the case of countable ordinals, α is a cardinal in $L^{V[G]}$. But $L^{V[G]} = L^{V}$, again by the absoluteness of constructibility. $\begin{array}{c} \Sigma_1^1\text{-}AD \rightarrow 0^{\sharp} \text{ exists} \\ \bullet 0000000000 \end{array}$

Equivalences of 0[#]

Main Theorem

We are now ready to prove the main theorem.

Theorem

If for some $x \in \omega^{\omega}$, every ordinal admissible in x is a cardinal of L, then there is a non-trivial elementary embedding $j : L \to L$.

A common way to construct an elementary embedding is to use ultrapowers. Let (M, \in) be a model. Recall that if $U \in M$ is an ultrafilter on some cardinal κ , then we may define the equivalence relations by:

$$f \sim g \iff \{\alpha < \kappa : f(\alpha) = g(\alpha)\} \in U$$

Let M^{κ}/U be the set of equivalence relations [f]. Then:

$$[f] \in^* [g] \iff \{\alpha < \kappa : f(\alpha) \in g(\alpha)\} \in U$$

Note that elementary embeddings of ultrapowers are always non-trivial.

It turns out that we do not actually need the fact that $U \in M$.

Definition

Let (M, \in) be a model. U (not necessarily in M) is an *M*-ultrafilter on κ if:

- 1. $\emptyset \notin U, \kappa \in U$.
- 2. $X \in U$ and $Y \in U$ implies that $X \cap Y \in U$.
- 3. If $X \in U$, $X \subseteq Y$ and $Y \in M$. then $Y \in U$.
- 4. If $X \subseteq \kappa$ and $X \in M$, then $X \in U$ or $Y \in U$.

We can proceed with the usual construction of M^{κ}/U .

Theorem

If U is a non-principal M-ultrafilter, then $j: M \to M^{\kappa}/U$ is a non-trivial elementary embedding.

If U is closed under all countable intersections (including those not in M), then M^{κ}/U is well-founded. See Lemma 17.2 of Jech.

We now proceed with the proof. Since *L* is absolute, it suffices to prove this theorem in L[x]. The steps to proving this theorem are as follows:

- 1. Construct an elementary submodel $(M, \in) \preceq (L_{\aleph_3}[x], \in)$ with special properties.
- 2. Let π be the inverse of the transitive collapse of (M, \in) . Then $\pi: L_{\alpha}[x] \to M$ is elementary and non-trivial.
- 3. Use π to define a non-principal *L*-ultrafilter *D* on some κ that is closed under all countable intersections.

Then L^{κ}/D is well-founded, so its transitive collapse is a subclass of *L* that is elementarily equivalent to *L*. By Gödel's condensation lemma, its transitive collapse is exactly *L*.

- The model M we wish to construct is an elementary submodel $M \preceq L_{\aleph_3}[x]$ such that:
 - 1. $|M| = \aleph_1$.
 - 2. $\aleph_2 \in M$.
 - 3. *M* is closed under countable sequences (i.e. $M^{\omega} \subseteq M$).

We shall do this by induction.

 $\begin{array}{c} \Sigma_1^1\text{-} AD \rightarrow 0^{\sharp} \text{ exists} \\ \circ \circ \circ \circ \circ \circ \bullet \circ \circ \circ \circ \end{array}$

- 1. By Löwenheim-Skolem, we let $M_0 \leq L_{\aleph_3}[x]$ be any elementary submodel such that $|M_0| = \aleph_1$ and $\aleph_2 \in M_0$.
- 2. By Löwenheim-Skolem again, we let $M_{\alpha+1} \leq L_{\aleph_3}[x]$ be any elementary submodel such that $|M_{\alpha+1}| = \aleph_1$ and $M_{\alpha} \cup M_{\alpha}^{\omega} \subseteq M_{\alpha+1}$. Note that $|M_{\alpha}^{\omega}| = \aleph_1^{\aleph_0} = \aleph_1$, as $L[x] \models CH$ (Exercise).
- 3. If α is limit, let $M_{\alpha} := \bigcup_{\beta < \alpha} M_{\beta}$. $M_{\alpha} \preceq L_{\aleph_3}[x]$ as the increasing union of elementary submodel is an elementary submodel (Exercise).

We then let $M := \bigcup_{\alpha < \omega_1} M_{\alpha}$. Clearly M satisfies the three required conditions, so this completes step 1. Note that $M \models \text{KP}$, as \aleph_3 is admissible in x.

 $\begin{array}{c} \Sigma_1^1\text{-}\mathsf{AD} \to 0^{\sharp} \text{ exists} \\ \circ \circ \circ \circ \circ \circ \circ \bullet \circ \circ \circ \end{array}$

Equivalences of 0[#]

Let $\pi : L_{\alpha}[x]$ be the inverse of transitive collapse of M. Note that $|\alpha| = \aleph_1$. We then define:

$$D:=\{Z\subseteq\kappa:\kappa\in\pi(Z)\}$$

Claim

D is a non-principal L-ultrafilter over κ that is closed under all countable intersections.

Note that D is clearly a filter.

Proof.

We first note that since $L_{\alpha}[x] \preceq L_{\aleph_3}[x]$, and $L_{\aleph_3}[x] \models \mathsf{KP}$, we have that α is admissible in x. By our hypothesis, α is a cardinal in L. Therefore, since $\alpha > \kappa$, $Z \in L_{\alpha} \subseteq L_{\alpha}[x]$ for all $Z \subseteq \kappa$.

<u>*D* is an *L*-ultrafilter:</u> We have that for all $Z \subseteq \kappa$, $Z \in dom(\pi) = L_{\alpha}[x]$, so:

$$\kappa \in \pi(\kappa) = \pi(Z \cup (\kappa \setminus Z)) = \pi(Z) \cup \pi(\kappa \setminus Z)$$

Proof (Cont.)

<u>*D*</u> is countably closed: Suppose $\{Z_n : n < \omega\} \subseteq D \subseteq L_{\alpha}[x]$. Then $\{\pi(Z_n) : n < \omega\} \subseteq M$, and since *M* is closed under countable sequences. $\{\pi(Z_n) : n < \omega\} \in M$. Since $M \models KP$ and intersection is Δ_0 , we have that:

$$\bigcap_{n < \omega} \pi(Z_n) = \bigcap \{ \pi(Z_n) : n < \omega \} \in M$$

Let $Z := \pi^{-1} \left(\bigcap_{n < \omega} Z_n \right) \in L_{\alpha}[x]$. By elementarity, $Z = \bigcap_{n < \omega} Z_n$. We have that:

$$\kappa \in \bigcap_{n < \omega} \pi(Z_n) = \pi\left(\bigcap_{n < \omega} Z_n\right) = \pi(Z)$$

so $Z \in D$.

Some remarks on higher determinacy:

- 1. Σ_n^1 -AD is equiconsistent with ZFC + *n* Woodin cardinals. Consequently, projective determinacy (i.e. Σ_n^1 -AD for all *n*) is equiconsistent with the conjunction of ZFC + *n* Woodin cardinals for all *n*.
- 2. Recall that AD is equiconsistent with $ZFC + \omega$ Woodin cardinals. It turns out that this is strictly stronger than ZFC + n Woodin cardinals for all n.
- 3. Turing determinacy asserts that every Turing invariant subset of ω^{ω} is determined. It is open if it is equiconsistent with AD.

0[‡] and Elementary embeddings

In this section, we discuss the proof that a non-trivial $j: L \rightarrow L$ exists iff Silver indiscernibles exist.

We first introduce Skolem terms and functions.

Definition

Fix a model $\mathfrak{A} = (A, \in)$, and let $\varphi(u, v_1, \dots, v_n)$ be a formula. A *Skolem function* for φ is an *n*-ary function $h_{\varphi}^{\mathfrak{A}}$ such that for all $a_1, \dots, a_n \in A$, if:

$$\exists a \in A[\mathfrak{A} \models \varphi[a, a_1, \dots, a_n]]$$

then:

$$\mathfrak{A}\models \varphi[h_{\varphi}^{\mathfrak{A}}(a_1,\ldots,a_n),a_1,\ldots,a_n]$$

There exists a Skolem function in *L* for all formulas φ , as *L* is globally well-ordered by $<_L$, so we may let:

$$h_{\varphi}^{L}(v_{1},\ldots,v_{n}) := \begin{cases} \mathsf{The} <_{L} \mathsf{-least} \ u \text{ such that } \varphi^{L}(u,v_{1},\ldots,v_{n}) \\ \emptyset, \mathsf{otherwise} \end{cases}$$

Definition

A Skolem term $t(v_1, \ldots, v_n)$ is a term made by the composition of Skolem functions and variables.

If 0^{\sharp} exists, then every element can be expressed as $t^{L}[\gamma_{1}, \ldots, \gamma_{n}]$ for some indiscernibles $\gamma_{1} < \cdots < \gamma_{n}$.

Proof of $0^{\sharp} \implies j: L \rightarrow L$.

Let $j : I \rightarrow I$ be any order-preserving function from the indiscernibles into itself. Extend j to L by:

$$j(t^{L}[\gamma_{1},\ldots,\gamma_{n}]) := t^{L}[j(\gamma_{1}),\ldots,j(\gamma_{n})]$$

Clearly j is elementary, and if $j : I \rightarrow I$ is non-trivial, then so is $j : L \rightarrow L$.

We now give a sketch of the proof of the converse. Let γ be the critical point of $j: L \to L$, and assume WLOG that it is the ultrapower embedding $j: L \to L^{\gamma}/D$, where $D = \{X \in \mathcal{P}^{L}(\gamma) : \gamma \in j(X)\}.$

A combinatorial argument gives:

Lemma

If κ is a limit cardinal and $cf(\kappa) > \gamma$, then $j(\kappa) = \kappa$.

 $\begin{array}{c} \Sigma_1^1\text{-}\mathsf{AD} \to \mathbf{0}^{\sharp} \text{ exists} \\ \text{oooooooooo} \end{array}$

Now define a sequence of classes as follows:

1.
$$U_0 := \{ \kappa \in \mathbf{ORD} : \kappa \text{ is a limit cardinal } \land \mathsf{cf}(\kappa) > \gamma \}.$$

2.
$$U_{\alpha+1} := \{ \kappa \in U_{\alpha} : |U_{\alpha} \cap \kappa| = \kappa \}.$$

3.
$$U_{\alpha} := \bigcap_{\beta < \alpha} U_{\beta}$$
, if α is limit.

One can check that U_{α} is a proper class for all α .

Definition

Let $\mathfrak{A} = (A, \in)$ be a model. Given a set $X \subseteq A$, the *Skolem hull* of X in \mathfrak{A} is:

$$H^{\mathfrak{A}}(X) := \{t^{\mathfrak{A}}[x_1,\ldots,x_n]: x_1,\ldots,x_n \in X\}$$

Some basic properties of Skolem hull:

1.
$$H^{\mathfrak{A}}(X) \preceq \mathfrak{A}$$
.

- 2. If X is infinite, then $|H^{\mathfrak{A}}(X)| = |X|$.
- 3. If $X \subseteq Y$, then $H^{\mathfrak{A}}(X) \subseteq H^{\mathfrak{A}}(Y)$.

Fix $\kappa \in U_{\omega_1}$, so $|U_{\alpha} \cap \kappa| = \kappa$ for all $\alpha < \omega_1$. For $\alpha < \omega_1$, define:

$$M_{lpha} := H^{L_{\kappa}}(\gamma \cup (U_{lpha} \cap \kappa))$$

We have $M_{\alpha} \leq L_{\kappa}$. Let $\pi_{\alpha} : M_{\alpha} \rightarrow L_{\kappa}$ be the transitive collapse (as $|M_{\alpha}| = \kappa$). Then $i_{\alpha} := \pi_{\alpha}^{-1} : L_{\kappa} \rightarrow L_{\kappa}$ is an elementary embedding. Let $\gamma_{\alpha} := i_{\alpha}(\gamma)$.

Lemma

- 1. γ_{α} is the least ordinal greater than γ in M_{α} .
- 2. If $\alpha < \beta$ and $x \in M_{\beta}$, then $i_{\alpha}(x) = x$. In particular, $i_{\alpha}(\gamma_{\beta}) = \gamma_{\beta}$.
- 3. If $\alpha < \beta$, then $\gamma_{\alpha} < \gamma_{\beta}$.

Proof.

We first observe that $j \upharpoonright M_{\alpha}$ is the identity. Indeed, if $x = t^{L}[\eta_{1}, \ldots, \eta_{n}] \in M_{\alpha} = H^{L_{\kappa}}(\gamma \cup (U_{\alpha} \cap \kappa))$, then:

$$j(x) = j(t[\eta_1,\ldots,\eta_n]) = t[j(\eta_1),\ldots,j(\eta_n)] = t[\eta_1,\ldots,\eta_n] = x$$

as j fixes all elements in $\gamma \cup (U_{\alpha} \cap \kappa)$.

Proof (Cont.)

- 1. Elementarity asserts that $i_{\alpha}(\gamma)$ is the least ordinal in M_{α} that is $\geq \gamma$. But $\gamma \notin M_{\alpha}$, as $j(\gamma) \neq \gamma$.
- 2. Write $x = t^{L}[\eta_{1}, \ldots, \eta_{n}]$, where $\eta_{1}, \ldots, \eta_{n} \in \gamma \cup (U_{\beta} \cap \kappa)$. If $\eta \in \gamma$, clearly $i_{\alpha}(\eta) = \eta$ as $\gamma \subseteq M_{\alpha}$. If $\eta \in U_{\beta} \cap \kappa$, then since $U_{\beta} \subseteq U_{\alpha}$, $|\eta \cap (U_{\alpha} \cap \kappa)| = \kappa$, so $\pi_{\alpha}(\eta) = \eta$. Hence $i_{\alpha}(x) = x$.
- 3. Since $M_{\beta} \subseteq M_{\alpha}$, $\gamma_{\alpha} \leq \gamma_{\beta}$. $\gamma_{\alpha} \neq \gamma_{\beta}$ as $i_{\alpha}(\gamma_{\alpha}) > i_{\alpha}(\gamma) = \gamma_{\alpha}$, but $i_{\alpha}(\gamma_{\beta}) = \gamma_{\beta}$.

Lemma

If $\alpha < \beta < \omega_1$, then there exists an elementary embedding $i_{\alpha,\beta} : L_{\kappa} \to L_{\kappa}$ such that: 1. If $\xi < \alpha$ or $\xi > \beta$, then $i_{\alpha,\beta}(\gamma_{\xi}) = \gamma_{\xi}$. 2. $i_{\alpha,\beta}(\gamma_{\alpha}) = \gamma_{\beta}$.

Proof.

Let $M_{\alpha,\beta} = H^{L_{\kappa}}(\gamma_{\alpha} \cup (U_{\beta} \cap \kappa))$, and let $i_{\alpha,\beta} = \pi_{\alpha,\beta}^{-1}$ be the inverse of the transitive collapse. Property (1) of $i_{\alpha,\beta}$ is proved the same way as (2) of the previous lemma. For property (2) of $i_{\alpha,\beta}$, we first observe that:

- 1. Since $\gamma_{\alpha} \subseteq M_{\alpha,\beta}$, $i_{\alpha,\beta}(\gamma_{\alpha})$ is the least ordinal at least γ_{α} in $M_{\alpha,\beta}$.
- 2. Since $\gamma_{\beta} \in M_{\alpha,\beta}$ and $\gamma_{\alpha} < \gamma_{\beta}$, $i_{\alpha,\beta}(\gamma_{\alpha}) \leq \gamma_{\beta}$.

It suffices to show that there are no ordinals $\delta \in M_{\alpha,\beta}$ such that $\gamma_{\alpha} \leq \delta < \gamma_{\beta}$.

Proof (Cont.)

Suppose such a δ exist. Write $\delta = t(\xi_1, \ldots, \xi_n, \eta_1, \ldots, \eta_k)$, where $\xi_i < \gamma_{\alpha}$ and $\eta_i \in U_{\beta} \cap \kappa$. Then:

$$(L_{\kappa}, \in) \models \exists \xi_1, \ldots, \xi_n < \gamma_{\alpha} [\gamma_{\alpha} \leq t[\xi_1, \ldots, \xi_n, \eta_1, \ldots, \eta_k] < \gamma_{\beta}]$$

By the previous lemma, we may rewrite above as:

$$(\mathcal{L}_{\kappa}, \in) \models \exists \xi_{1}, \dots, \xi_{n} < i_{\alpha}(\gamma) [i_{\alpha}(\gamma) \leq t[\xi_{1}, \dots, \xi_{n}, i_{\alpha}(\eta_{1}), \dots, i_{\alpha}(\eta_{k})] < i_{\alpha}(\gamma_{\beta})]$$

By elementarity:

$$(L_{\kappa}, \in) \models \exists \xi_1, \ldots, \xi_n < \gamma [\gamma \leq t[\xi_1, \ldots, \xi_n, \eta_1, \ldots, \eta_k] < \gamma_{\beta}]$$

But this contradicts the minimality of γ_{β} in M_{β} (as $t[\xi_1, \ldots, \xi_n, \eta_1, \ldots, \eta_k] \in M_{\beta}$).

 $\begin{array}{c} \Sigma_1^1\text{-}\text{AD} \to 0^{\sharp} \text{ exists} \\ 000000000000 \end{array}$

We now prove the converse. We shall borrow the following result:

Theorem

 0^{\sharp} exists iff for some limit ordinal λ , (L_{λ}, \in) has an uncountable set of indiscernibles.

See Corollary 18.18 of Jech.

Proof of $j: L \to L \implies 0^{\sharp}$.

We shall show that $\{\gamma_{\alpha} : \alpha < \omega_1\}$ is a set of indiscernibles for $(\mathcal{L}_{\kappa}, \in)$. Given a formula φ , we wish to show that for all $\alpha_1 < \cdots < \alpha_n$ and $\beta_1 < \cdots < \beta_n$, we have that:

$$\mathcal{L}_{\kappa} \models \varphi[\gamma_{\alpha_1}, \dots, \gamma_{\alpha_n}] \iff \mathcal{L}_{\kappa} \models \varphi[\gamma_{\beta_1}, \dots, \gamma_{\beta_n}]$$

Let $\delta_1 < \cdots < \delta_n$ such that $\alpha_n, \beta_n < \delta_1$. Applying the embedding i_{α_n, δ_n} , we have that:

$$\mathcal{L}_{\kappa} \models \varphi[\gamma_{\alpha_1}, \ldots, \gamma_{\alpha_n}] \iff \mathcal{L}_{\kappa} \models \varphi[\gamma_{\alpha_1}, \ldots, \gamma_{\alpha_{n-1}}, \gamma_{\delta_n}]$$

as i_{α_n,δ_n} fixes $\alpha_1, \ldots, \alpha_{n-1}$. Repeat this for $i_{\alpha_{n-1},\delta_{n-1}}, i_{\alpha_{n-2},\delta_{n-2}}, \ldots$, and we get:

$$L_{\kappa} \models \varphi[\gamma_{\alpha_1}, \dots, \gamma_{\alpha_n}] \iff L_{\kappa} \models \varphi[\gamma_{\delta_1}, \dots, \gamma_{\delta_n}]$$

Now do the same for $\varphi[\gamma_{\beta_1}, \ldots, \gamma_{\beta_n}]$.