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Let F denote the Friedman's set, and let C C F be a cone.

If x € C CF and « is admissible in x, then « is a cardinal in L.

Last week, we proved this in the case where « is countable. Note
that every uncountable regular cardinal is admissible in x for any
X € wv.
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Proof.

Let o be an uncountable ordinal admissible in x. Since x € C C F,
Cx C F. Observe that:

CcCF <= Vyewx<py—>y€cF]

Since F is X1, the above statement is M3(x). By Shoenfield's
absoluteness, “C, C F” is absolute across all models of ZF
containing x.
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Proof (Cont.)

Let IP be any forcing notion that collapses o to a countable ordinal
(for example, P = Coll(w, |a|")). Let G be P-generic over V.
Then a € V[G] is a countable ordinal. By the absoluteness of
constructibility, Lyl [x] = LY[x] is a model of KP. Therefore, a is
admissible in x, so by the theorem in the case of countable
ordinals, « is a cardinal in LVIC]l But LVIGl — LV, again by the
absoluteness of constructibility. Ol



We are now ready to prove the main theorem.

If for some x € w*, every ordinal admissible in x is a cardinal of L,
then there is a non-trivial elementary embedding j : L — L.
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A common way to construct an elementary embedding is to use
ultrapowers. Let (M, €) be a model. Recall that if U € M is an
ultrafilter on some cardinal x, then we may define the equivalence
relations by:

frg <= {a<k:fla)=gla)} e U
Let M*/U be the set of equivalence relations [f]. Then:
[fle* [g] <= {a<k:f(a)ecgla)l €U

Note that elementary embeddings of ultrapowers are always
non-trivial.



Friedman’s Set T1AD — 07 exists Equivalences of 0*
000 05000000000 0000000000000000

It turns out that we do not actually need the fact that U € M.
Definition
Let (M, €) be a model. U (not necessarily in M) is an
M-ultrafilter on k if:

1.0 ¢ U, ke U.

2. XeUand Y € Uimpliesthat XNY € U.

3.1f XeU, XCYand Y €EM. then Y € U.

4. f X Crkand X € M, then X € Uor Y € U.
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We can proceed with the usual construction of M*/U.

Theorem

If U is a non-principal M-ultrafilter, then j : M — M*/U is a
non-trivial elementary embedding.

If U is closed under all countable intersections (including those not
in M), then M*/U is well-founded. See Lemma 17.2 of Jech.
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We now proceed with the proof. Since L is absolute, it suffices to
prove this theorem in L[x]. The steps to proving this theorem are
as follows:

1. Construct an elementary submodel (M, €) < (Ly,[x], €) with
special properties.

2. Let 7 be the inverse of the transitive collapse of (M, €). Then
7. Lo[x] — M is elementary and non-trivial.

3. Use 7 to define a non-principal L-ultrafilter D on some « that
is closed under all countable intersections.

Then L®/D is well-founded, so its transitive collapse is a subclass
of L that is elementarily equivalent to L. By Godel’s condensation
lemma, its transitive collapse is exactly L.
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The model M we wish to construct is an elementary submodel
M =< Ly,[x] such that:

1. M| =Ry,
2. Ny € M.

3. M is closed under countable sequences (i.e. M“ C M).

We shall do this by induction.
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1. By Lowenheim-Skolem, we let My < Ly,[x] be any elementary
submodel such that |Mp| = N1 and Ry € M.

2. By Loéwenheim-Skolem again, we let M1 < Ly,[x] be any
elementary submodel such that |M,41| = 83 and
Mg UMY C Mgy 1. Note that |[M@| = R® =Ry, as
L[x] = CH (Exercise).

3. If aiis limit, let My, := g, Mg. Mo = Lyy[x] as the
increasing union of elementary submodel is an elementary
submodel (Exercise).

We then let M :=|J,_,,, Ma. Clearly M satisfies the three
required conditions, so this completes step 1. Note that M = KP,
as N3 is admissible in x.
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Let 7 : L,[x] be the inverse of transitive collapse of M. Note that
|| = Ny, We then define:

D:={ZCrk:remn(Z)}

Claim

D is a non-principal L-ultrafilter over k that is closed under all
countable intersections.

Note that D is clearly a filter.
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Proof.

We first note that since L,[x] < Ly,[x], and Ly,[x] = KP, we have
that « is admissible in x. By our hypothesis, « is a cardinal in L.
Therefore, since a > K, Z € L, C Ly[x] for all Z C k.

D is an L-ultrafilter: We have that for all Z C &,
Z € dom(7) = L,[x], so:

kemk)=m(ZU(k\ 2Z2))=n(Z)Un(k\ 2)
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Proof (Cont.)

D is countably closed: Suppose {Z, : n < w} C D C L,[x]. Then
{m(Z,) : n <w} C M, and since M is closed under countable
sequences. {7(Z,): n <w} € M. Since M |= KP and intersection
is Ag, we have that:

ﬂ w(Zp) = ﬂ{?T(Zn) n<wleM

n<w

Let Z := 7' (e Zn) € La[x]. By elementarity, Z =,_., Z»
We have that:

K€ ﬂw(zn):w<ﬂz,,>=

n<w n<w

so ZeD. O]
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Some remarks on higher determinacy:

1. ¥1-AD is equiconsistent with ZFC + n Woodin cardinals.
Consequently, projective determinacy (i.e. £1-AD for all n) is
equiconsistent with the conjunction of ZFC + n Woodin
cardinals for all n.

2. Recall that AD is equiconsistent with ZFC + w Woodin
cardinals. It turns out that this is strictly stronger than
ZFC + n Woodin cardinals for all n.

3. Turing determinacy asserts that every Turing invariant subset
of w* is determined. It is open if it is equiconsistent with AD.
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0f and Elementary embeddings

In this section, we discuss the proof that a non-trivial j : L — L
exists iff Silver indiscernibles exist.

We first introduce Skolem terms and functions.
Definition
Fix a model 2 = (A, €), and let ¢(u, v1,...,vy) be a formula. A

Skolem function for ¢ is an n-ary function hg such that for all
ai,...,anp €A, if:

Jda € Al E pla, a1, ..., a4
then:

A= go[hg(al, eeydn),aly. .-, an)
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There exists a Skolem function in L for all formulas ¢, as L is
globally well-ordered by <;, so we may let:

hL(vl va) = The <;-least u such that @(u,vi,...,v,)
prifrr (0, otherwise
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Definition
A Skolem term t(v1,...,v,) is a term made by the composition of
Skolem functions and variables.

If 0% exists, then every element can be expressed as t:[vy1, ..., ,]
for some indiscernibles v < - -+ < 7,.
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Proof of 0f = j: L — L.

Let j : /| — | be any order-preserving function from the
indiscernibles into itself. Extend j to L by:

J(E v, - nl) = i), ()]

Clearly j is elementary, and if j : | — [ is non-trivial, then so is
j:L— L. O
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We now give a sketch of the proof of the converse. Let v be the
critical point of j : L — L, and assume WLOG that it is the
ultrapower embedding j : L — L7/D, where

D ={X € P(y): v €j(X)}.
A combinatorial argument gives:
Lemma

If k is a limit cardinal and cf(k) > -, then j(k) = k.



Friedman'’s Set Y1 AD — 0% exists Equivalences of 0f
00000000000 0000080000000000

Now define a sequence of classes as follows:

1. Up:={xk € ORD : & is a limit cardinal A cf(r) > ~}.
2. Upt1:=1{r € Uy : |UyN K| = K}
3. Ua :=g<q Us, if ais limit.

One can check that U, is a proper class for all .
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Definition
Let 2 = (A, €) be a model. Given a set X C A, the Skolem hull of
X in 2 is:

HY(X) := {t*[x1, .., Xn] s X1, ..., X0 € X}

Some basic properties of Skolem hull:
1. H¥(X) =2

2. If X is infinite, then |H*(X)| = |X].
3. If X C Y, then H¥(X) C H¥(Y).
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Fix & € U,,, so |Uy N K| =k for all @ < wy. For a < wy, define:
M, = H (v U (Us N k)

We have M, = L. Let m, : My, — L, be the transitive collapse
(as |[M,| = k). Then iy := 7,1 : L, — L, is an elementary
embedding. Let v, 1= in(7).
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1. v, is the least ordinal greater than ~y in M,.

2. If a < 8 and x € Mg, then iy(x) = x. In particular,
ia(78) = 8-

3. Ifa < B, then 7o < 3.
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Proof.

We first observe that j|M, is the identity. Indeed, if
x = th[n, ..., n.] € My = HY(y U (U, N K)), then:

J(X) :f(t[ﬁl, S ,77n]) = t[j(nl)w 20 aj(nn)] = t[m,- . -,77n] =X

as j fixes all elements in v U (U, N k).
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Proof (Cont.)

1. Elementarity asserts that iy () is the least ordinal in M,, that
is > . But v & My, as j(v) # -

2. Write x = tL[n,...,mn], where m1,...,mp € YU (Us N k). If
n € v, clearly in(n) =1 as v C M. If n € Us Nk, then since
Ug C Uy, InN (UaNK)| = K, so ma(n) =n. Hence iy(x) = x.

3. Since Mg € Mo, Yo <78 Yo 7# 78 35 ia(Ya) > ia(7) = Yo
but ia(75) = ¥5-

O]



If « < B < wi, then there exists an elementary embedding
la, : L — Ly such that:

1. Ifé <aoré&> B, then inp(ve) = e
2. ia,5(Va) = 8-
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Proof.
Let Mo g = H (7o U (U N k), and let iy 3 = 7, be the inverse
of the transitive collapse. Property (1) of i, g is proved the same
way as (2) of the previous lemma. For property (2) of iy g, we first
observe that:

1. Since 7o € M, 8, ia,8(7Va) is the least ordinal at least 7, in

M, 3.

2. Since v3 € My g and 7o < Y8, ia,8(Va) < V8-
It suffices to show that there are no ordinals 6 € M, g such that
Yo < o< Y8
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Proof (Cont.)

Suppose such a § exist. Write § = t(&1,...,&n, M1, - -, Mk), Where
& <o and n; € UgN k. Then:

(Lme) ):Elfla‘--agn <’Yo¢['7a < t[fl,---,fmnlw-wﬁk] <76]

By the previous lemma, we may rewrite above as:

(Lm 6) ): 361, s 7£n < ia(')/)
lia(7) < tlé1, .- 6nsia(m), - - - ia(nk)] < ia(vp)]

By elementarity:
(Le,€) E 3, 6n <y < tlény - &noms - mi] < 8]

But this contradicts the minimality of 75 in Mg (as
t[£17"')§n77717"‘777k]GMB)' D
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We now prove the converse. We shall borrow the following result:
Theorem

0% exists iff for some limit ordinal \, (Ly, €) has an uncountable set
of indiscernibles.

See Corollary 18.18 of Jech.
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Proof of j : L — L = 0F.

We shall show that {7, : @ < w1} is a set of indiscernibles for
(Ls, €). Given a formula ¢, we wish to show that for all
ay < - < apand B < --- < B, we have that:

Le B ¢lvars--->Yan] <= Le E ©lV815- 78]

Let 01 < --- < &, such that «ap,, B, < d1. Applying the embedding
lon,5,» We have that:

Ly = 90[7&1a cYan] = Lo ‘P[%m ‘e 77an71’ry§n]

as iy, s, fixes ag,...,a,_1. Repeat this for
Iy 1,601 lcp 2,652+ -, and we get:

Le E¢lVary-- > %] <= Le E 0lVey,-- 575

Now do the same for [vs,,...,73,]. O
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