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Friedman Set

Let F denote the Friedman’s set, and let C ⊆ F be a cone.

Lemma

If x ∈ C ⊆ F and α is admissible in x, then α is a cardinal in L.

Last week, we proved this in the case where α is countable. Note
that every uncountable regular cardinal is admissible in x for any
x ∈ ωω.
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Proof.

Let α be an uncountable ordinal admissible in x . Since x ∈ C ⊆ F,
Cx ⊆ F. Observe that:

Cx ⊆ F ⇐⇒ ∀y ∈ ωω[x ≤T y → y ∈ F]

Since F is Σ1
1, the above statement is Π1

2(x). By Shoenfield’s
absoluteness, “Cx ⊆ F” is absolute across all models of ZF
containing x .
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Proof (Cont.)

Let P be any forcing notion that collapses α to a countable ordinal
(for example, P = Coll(ω, |α|+)). Let G be P-generic over V .
Then α ∈ V [G ] is a countable ordinal. By the absoluteness of

constructibility, L
V [G ]
α [x ] = LVα [x ] is a model of KP. Therefore, α is

admissible in x , so by the theorem in the case of countable
ordinals, α is a cardinal in LV [G ]. But LV [G ] = LV , again by the
absoluteness of constructibility.
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Main Theorem

We are now ready to prove the main theorem.

Theorem

If for some x ∈ ωω, every ordinal admissible in x is a cardinal of L,
then there is a non-trivial elementary embedding j : L → L.
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A common way to construct an elementary embedding is to use
ultrapowers. Let (M,∈) be a model. Recall that if U ∈ M is an
ultrafilter on some cardinal κ, then we may define the equivalence
relations by:

f ∼ g ⇐⇒ {α < κ : f (α) = g(α)} ∈ U

Let Mκ/U be the set of equivalence relations [f ]. Then:

[f ] ∈∗ [g ] ⇐⇒ {α < κ : f (α) ∈ g(α)} ∈ U

Note that elementary embeddings of ultrapowers are always
non-trivial.
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It turns out that we do not actually need the fact that U ∈ M.

Definition

Let (M,∈) be a model. U (not necessarily in M) is an
M-ultrafilter on κ if:

1. ∅ /∈ U, κ ∈ U.

2. X ∈ U and Y ∈ U implies that X ∩ Y ∈ U.

3. If X ∈ U, X ⊆ Y and Y ∈ M. then Y ∈ U.

4. If X ⊆ κ and X ∈ M, then X ∈ U or Y ∈ U.



Friedman’s Set Σ1
1-AD → 0♯ exists Equivalences of 0♯

We can proceed with the usual construction of Mκ/U.

Theorem

If U is a non-principal M-ultrafilter, then j : M → Mκ/U is a
non-trivial elementary embedding.

If U is closed under all countable intersections (including those not
in M), then Mκ/U is well-founded. See Lemma 17.2 of Jech.
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We now proceed with the proof. Since L is absolute, it suffices to
prove this theorem in L[x ]. The steps to proving this theorem are
as follows:

1. Construct an elementary submodel (M,∈) ⪯ (Lℵ3 [x ],∈) with
special properties.

2. Let π be the inverse of the transitive collapse of (M,∈). Then
π : Lα[x ] → M is elementary and non-trivial.

3. Use π to define a non-principal L-ultrafilter D on some κ that
is closed under all countable intersections.

Then Lκ/D is well-founded, so its transitive collapse is a subclass
of L that is elementarily equivalent to L. By Gödel’s condensation
lemma, its transitive collapse is exactly L.
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The model M we wish to construct is an elementary submodel
M ⪯ Lℵ3 [x ] such that:

1. |M| = ℵ1.

2. ℵ2 ∈ M.

3. M is closed under countable sequences (i.e. Mω ⊆ M).

We shall do this by induction.



Friedman’s Set Σ1
1-AD → 0♯ exists Equivalences of 0♯

1. By Löwenheim-Skolem, we let M0 ⪯ Lℵ3 [x ] be any elementary
submodel such that |M0| = ℵ1 and ℵ2 ∈ M0.

2. By Löwenheim-Skolem again, we let Mα+1 ⪯ Lℵ3 [x ] be any
elementary submodel such that |Mα+1| = ℵ1 and
Mα ∪Mω

α ⊆ Mα+1. Note that |Mω
α | = ℵℵ0

1 = ℵ1, as
L[x ] |= CH (Exercise).

3. If α is limit, let Mα :=
⋃

β<αMβ. Mα ⪯ Lℵ3 [x ] as the
increasing union of elementary submodel is an elementary
submodel (Exercise).

We then let M :=
⋃

α<ω1
Mα. Clearly M satisfies the three

required conditions, so this completes step 1. Note that M |= KP,
as ℵ3 is admissible in x .
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Let π : Lα[x ] be the inverse of transitive collapse of M. Note that
|α| = ℵ1. We then define:

D := {Z ⊆ κ : κ ∈ π(Z )}

Claim

D is a non-principal L-ultrafilter over κ that is closed under all
countable intersections.

Note that D is clearly a filter.
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Proof.

We first note that since Lα[x ] ⪯ Lℵ3 [x ], and Lℵ3 [x ] |= KP, we have
that α is admissible in x . By our hypothesis, α is a cardinal in L.
Therefore, since α > κ, Z ∈ Lα ⊆ Lα[x ] for all Z ⊆ κ.

D is an L-ultrafilter: We have that for all Z ⊆ κ,
Z ∈ dom(π) = Lα[x ], so:

κ ∈ π(κ) = π(Z ∪ (κ \ Z )) = π(Z ) ∪ π(κ \ Z )
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Proof (Cont.)

D is countably closed: Suppose {Zn : n < ω} ⊆ D ⊆ Lα[x ]. Then
{π(Zn) : n < ω} ⊆ M, and since M is closed under countable
sequences. {π(Zn) : n < ω} ∈ M. Since M |= KP and intersection
is ∆0, we have that:⋂

n<ω

π(Zn) =
⋂

{π(Zn) : n < ω} ∈ M

Let Z := π−1
(⋂

n<ω Zn

)
∈ Lα[x ]. By elementarity, Z =

⋂
n<ω Zn.

We have that:

κ ∈
⋂
n<ω

π(Zn) = π

(⋂
n<ω

Zn

)
= π(Z )

so Z ∈ D.
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Some remarks on higher determinacy:

1. Σ1
n-AD is equiconsistent with ZFC + n Woodin cardinals.

Consequently, projective determinacy (i.e. Σ1
n-AD for all n) is

equiconsistent with the conjunction of ZFC + n Woodin
cardinals for all n.

2. Recall that AD is equiconsistent with ZFC + ω Woodin
cardinals. It turns out that this is strictly stronger than
ZFC + n Woodin cardinals for all n.

3. Turing determinacy asserts that every Turing invariant subset
of ωω is determined. It is open if it is equiconsistent with AD.
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0♯ and Elementary embeddings

In this section, we discuss the proof that a non-trivial j : L → L
exists iff Silver indiscernibles exist.

We first introduce Skolem terms and functions.

Definition

Fix a model A = (A,∈), and let φ(u, v1, . . . , vn) be a formula. A
Skolem function for φ is an n-ary function hAφ such that for all
a1, . . . , an ∈ A, if:

∃a ∈ A[A |= φ[a, a1, . . . , an]]

then:

A |= φ[hAφ(a1, . . . , an), a1, . . . , an]
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There exists a Skolem function in L for all formulas φ, as L is
globally well-ordered by <L, so we may let:

hLφ(v1, . . . , vn) :=

{
The <L-least u such that φL(u, v1, . . . , vn)

∅, otherwise
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Definition

A Skolem term t(v1, . . . , vn) is a term made by the composition of
Skolem functions and variables.

If 0♯ exists, then every element can be expressed as tL[γ1, . . . , γn]
for some indiscernibles γ1 < · · · < γn.
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Proof of 0♯ =⇒ j : L → L.

Let j : I → I be any order-preserving function from the
indiscernibles into itself. Extend j to L by:

j(tL[γ1, . . . , γn]) := tL[j(γ1), . . . , j(γn)]

Clearly j is elementary, and if j : I → I is non-trivial, then so is
j : L → L.
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We now give a sketch of the proof of the converse. Let γ be the
critical point of j : L → L, and assume WLOG that it is the
ultrapower embedding j : L → Lγ/D, where
D = {X ∈ PL(γ) : γ ∈ j(X )}.

A combinatorial argument gives:

Lemma

If κ is a limit cardinal and cf(κ) > γ, then j(κ) = κ.
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Now define a sequence of classes as follows:

1. U0 := {κ ∈ ORD : κ is a limit cardinal ∧ cf(κ) > γ}.
2. Uα+1 := {κ ∈ Uα : |Uα ∩ κ| = κ}.
3. Uα :=

⋂
β<α Uβ, if α is limit.

One can check that Uα is a proper class for all α.
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Definition

Let A = (A,∈) be a model. Given a set X ⊆ A, the Skolem hull of
X in A is:

HA(X ) := {tA[x1, . . . , xn] : x1, . . . , xn ∈ X}

Some basic properties of Skolem hull:

1. HA(X ) ⪯ A.

2. If X is infinite, then |HA(X )| = |X |.
3. If X ⊆ Y , then HA(X ) ⊆ HA(Y ).
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Fix κ ∈ Uω1 , so |Uα ∩ κ| = κ for all α < ω1. For α < ω1, define:

Mα := HLκ(γ ∪ (Uα ∩ κ))

We have Mα ⪯ Lκ. Let πα : Mα → Lκ be the transitive collapse
(as |Mα| = κ). Then iα := π−1

α : Lκ → Lκ is an elementary
embedding. Let γα := iα(γ).
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Lemma

1. γα is the least ordinal greater than γ in Mα.

2. If α < β and x ∈ Mβ, then iα(x) = x. In particular,
iα(γβ) = γβ.

3. If α < β, then γα < γβ.
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Proof.

We first observe that j↾Mα is the identity. Indeed, if
x = tL[η1, . . . , ηn] ∈ Mα = HLκ(γ ∪ (Uα ∩ κ)), then:

j(x) = j(t[η1, . . . , ηn]) = t[j(η1), . . . , j(ηn)] = t[η1, . . . , ηn] = x

as j fixes all elements in γ ∪ (Uα ∩ κ).
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Proof (Cont.)

1. Elementarity asserts that iα(γ) is the least ordinal in Mα that
is ≥ γ. But γ /∈ Mα, as j(γ) ̸= γ.

2. Write x = tL[η1, . . . , ηn], where η1, . . . , ηn ∈ γ ∪ (Uβ ∩ κ). If
η ∈ γ, clearly iα(η) = η as γ ⊆ Mα. If η ∈ Uβ ∩ κ, then since
Uβ ⊆ Uα, |η ∩ (Uα ∩ κ)| = κ, so πα(η) = η. Hence iα(x) = x .

3. Since Mβ ⊆ Mα, γα ≤ γβ. γα ̸= γβ as iα(γα) > iα(γ) = γα,
but iα(γβ) = γβ.
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Lemma

If α < β < ω1, then there exists an elementary embedding
iα,β : Lκ → Lκ such that:

1. If ξ < α or ξ > β, then iα,β(γξ) = γξ.

2. iα,β(γα) = γβ.
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Proof.

Let Mα,β = HLκ(γα ∪ (Uβ ∩ κ), and let iα,β = π−1
α,β be the inverse

of the transitive collapse. Property (1) of iα,β is proved the same
way as (2) of the previous lemma. For property (2) of iα,β, we first
observe that:

1. Since γα ⊆ Mα,β, iα,β(γα) is the least ordinal at least γα in
Mα,β.

2. Since γβ ∈ Mα,β and γα < γβ, iα,β(γα) ≤ γβ.

It suffices to show that there are no ordinals δ ∈ Mα,β such that
γα ≤ δ < γβ.



Friedman’s Set Σ1
1-AD → 0♯ exists Equivalences of 0♯

Proof (Cont.)

Suppose such a δ exist. Write δ = t(ξ1, . . . , ξn, η1, . . . , ηk), where
ξi < γα and ηi ∈ Uβ ∩ κ. Then:

(Lκ,∈) |= ∃ξ1, . . . , ξn < γα[γα ≤ t[ξ1, . . . , ξn, η1, . . . , ηk ] < γβ]

By the previous lemma, we may rewrite above as:

(Lκ,∈) |= ∃ξ1, . . . , ξn < iα(γ)

[iα(γ) ≤ t[ξ1, . . . , ξn, iα(η1), . . . , iα(ηk)] < iα(γβ)]

By elementarity:

(Lκ,∈) |= ∃ξ1, . . . , ξn < γ[γ ≤ t[ξ1, . . . , ξn, η1, . . . , ηk ] < γβ]

But this contradicts the minimality of γβ in Mβ (as
t[ξ1, . . . , ξn, η1, . . . , ηk ] ∈ Mβ).
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We now prove the converse. We shall borrow the following result:

Theorem

0♯ exists iff for some limit ordinal λ, (Lλ,∈) has an uncountable set
of indiscernibles.

See Corollary 18.18 of Jech.
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Proof of j : L → L =⇒ 0♯.

We shall show that {γα : α < ω1} is a set of indiscernibles for
(Lκ,∈). Given a formula φ, we wish to show that for all
α1 < · · · < αn and β1 < · · · < βn, we have that:

Lκ |= φ[γα1 , . . . , γαn ] ⇐⇒ Lκ |= φ[γβ1 , . . . , γβn ]

Let δ1 < · · · < δn such that αn, βn < δ1. Applying the embedding
iαn,δn , we have that:

Lκ |= φ[γα1 , . . . , γαn ] ⇐⇒ Lκ |= φ[γα1 , . . . , γαn−1 , γδn ]

as iαn,δn fixes α1, . . . , αn−1. Repeat this for
iαn−1,δn−1 , iαn−2,δn−2 , . . . , and we get:

Lκ |= φ[γα1 , . . . , γαn ] ⇐⇒ Lκ |= φ[γδ1 , . . . , γδn ]

Now do the same for φ[γβ1 , . . . , γβn ].
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