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Ramsey Theory

In general, Ramsey theory addresses the following types of
questions:

Let X be a set, and let Y0, . . . ,Yn−1 be a partition of X .
Does there exist some i < n such that Yi contains some

substructure of interest?
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Example.

1. X is infinite.

2. Structure = infinite set.

Fact (Pigeonhole principle)

Let X be an infinite set. If Y0, . . . ,Yn−1 is a partition of X , then
there exists some i < n such that Yi is infinite.
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Example.

1. X = [N]n.
2. Structure = homogeneous set, i.e. [H]n for some infinite

H ⊆ ω.

Theorem (Ramsey)

If Y0, . . . ,Yn−1 is a partition of [N]n, then there exists some i < n
and an infinite H ⊆ ω such that [H]n ⊆ Yi .
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Example. Let F be a countable (possibly finite) field. Let E be a
vector space over F of dimension ℵ0, with Hamel basis (en)n<ω.
Given a vector x ∈ E , we may write

x =
∑
n<ω

λn(x)en,

where only finitely many λn’s are non-zero. We may then write:

supp(x) := {n < ω : λn(x) ̸= 0}.

Example

If x = 2e3 − 6e17 + 5e58, then supp(x) = {3, 17, 58}.
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Notation

Given two vectors x , y we write:

x < y ⇐⇒ max(supp(x)) < min(supp(y)).

Example

If:

1. x = 2e3 − 6e17 + 5e58,

2. y = 5e67 + 990e133 − 155e236,

3. z = −32e43 + 5e665,

then x < y but x ̸< z .
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Definition

An infinite block sequence is a <-increasing sequence of elements
of E .

Definition

An infinite-dimensional subspace V ⊆ W is a block subspace if
V = span{xn : n < ω} for some infinite block sequence (xn)n<ω.
Note that {xn}n<ω is a (unique) basis of V .

Fact

Every infinite-dimensional subspace of E contains an
infinite-dimensional block subspace.
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Now consider the following setting:

1. X = E \ {0}, the set of non-zero vectors.

2. Structure = infinite-dimensional block subspaces (without 0).

Does the Ramsey theorem hold for this variant?

Theorem (Hindman)

Suppose that |F| = 2. If Y0, . . . ,Yn−1 is a partition of E \ {0},
then there exists some i < n and some infinite-dimensional block
subspace V such that V \ {0} ⊆ Yi .
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This theorem fails if |F| > 2. We define the set Y as:

{x ∈ E \ {0} : x = en + y for some en < y},
= {x ∈ E \ {0} : x = en0 + λn1en1 + · · ·+ λnk enk and n0 < · · · < nk}.

Then Y ,Y c partitions E \ {0}, but neither Y nor Y c contains an
infinite-dimensional subspace.

Example

Let A = (e0 + e1, e2 + e3, . . . ). Then e0 + e1 ∈ Y , but
2e0+2e1 ∈ Y c , so span(A) \ {0} is not a subset of either Y or Y c .
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Infinite-dimensional Ramsey theory

Infinite-dimensional Ramsey theory addresses a similar type of
question, but instead, we partition XN or a closed subest R of XN.
Here we equip X with the discrete topology, and XN with the
product topology.

More precisely:

Let X be a set. Let X0, . . . ,Xn−1 be a partition of R, a
closed subset of XN. Does there exist some i < n such that

Xi contains some substructure of interest?
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Example.

1. X = N.
2. R = [N]∞, which may be identified as the set of strictly

increasing sequences in NN.

3. Structure = Ellentuck neighbourhood of infinite subset.
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Let [N]<∞↾A := {a ∈ [N]<∞ : a ⊆ A}.

Notation

Given A ∈ [N]∞ and a ∈ [N]<∞↾A, we write:

[a,A] := {B ∈ [N]∞ : a ⊑ B and B ⊆ A}

where a ⊑ B means that B ∩max(a) = a.

Each [a,A] is also called an Ellentuck neighbourhood.
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Definition

A set X ⊆ [N]∞ is Ramsey if for all A ∈ [N]∞ and a ∈ [N]<∞↾A,
there exists some B ∈ [a,A] such that [a,B] ⊆ X or [a,B] ⊆ X c .

Theorem (Galvin-Prikry)

If X ⊆ [N]∞ is Borel, then X is Ramsey.
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Example. Let E a vector space over a countable field F of
dimension ℵ0, with Hamel basis (en)n<ω.

1. X = E .

2. R = E [∞], the set of all infinite block sequences of vectors
(⇔ infinite-dimensional block subspaces).

3. Structure = Ellentuck neighbourhood of infinite-dimensional
block subspaces.

Notation

If A = (xn)n<ω and B = (yn)n<ω are two elements of E [∞], then
we write:

B ≤ A ⇐⇒ span(B) ⊆ span(A).



15/47

Ramsey theory Topological Ramsey theory The Kastanas game Generalising to wA2-spaces Summary

Notation

Given A = (xn)n<ω ∈ E [∞], let E [<∞]↾A be the set of finite block
subspaces of A. In other words, the set of (ym)m<N such that
span{y0, . . . , yN−1} ⊆ span(A).

Notation

Given A ∈ E [∞] and a ∈ E [<∞]↾A, we write:

[a,A] := {B ∈ E [∞] : a ⊑ B and B ≤ A}

where a ⊑ B means that a is an initial segment of B.
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Definition

A set X ⊆ E [∞] is Ramsey if for all A ∈ E [∞] and a ∈ E [<∞]↾A,
there exists some B ∈ [a,A] such that [a,B] ⊆ X or [a,B] ⊆ X c .

Theorem (Infinite-dimensional Hindman’s theorem)

Suppose that |F| = 2. If X ⊆ E [∞] is Borel, then it is Ramsey.

Again, this theorem fails for |F| > 2 - there exists a clopen subset
X of E [∞] which is not Ramsey.
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We observe some patterns:

1. R is a set of infinite increasing sequences under some partial
order <.

2. Using either ⊆ or ≤, we defined the Ellentuck neighbourhood
[a,A], and the notion of Ramsey subsets X ⊆ R.

Question. Can this pattern be captured and made into an
abstract framework?
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Topological Ramsey theory

Consider the following setting:

1. R is a non-empty set, representing some set of infinite
increasing sequences.

2. ≤ is a quasi-order on R.

3. AR is a non-empty set, representing the set of finite
increasing sequences.

• For R = [N]∞, AR = [N]<∞.
• For R = E [∞], AR = E [<∞].

4. r : R× ω → AR is a function, with rn(−) := r(−, n), is a
restriction map that takes the first n elements of the
sequence.

• If A = {x0, x1, . . . } ∈ [N]∞, then rn(A) = {x0, . . . , xn−1}.
• If A = (x0, x1, . . . ) ∈ E [∞], then rn(A) = (x0, . . . , xn−1).
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Notation

Given a triple (R,≤, r), for A ∈ R and a ∈ AR:

a ⊑ A ⇐⇒ a = rn(A) for some n ∈ N.

Notation

If A ∈ R and a ∈ AR,

[a,A] := {B ∈ AR : a ⊑ B and B ≤ A}.
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Axiom (A1, Sequencing)

(1) r0(A) = ∅ for all A ∈ AR.

(2) A ̸= B implies rn(A) ̸= rn(B) for some n.

(3) rn(A) = rm(B) implies n = m and rk(A) = rk(B) for all k < n.
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Axiom (A2, Finitisation)

There is a quasi-ordering ≤fin on AR such that:

(1) {b ∈ AR : b ≤fin a} is finite for all b ∈ AR.

(2) A ≤ B iff ∀n∃m[rn(A) ≤fin rm(B)].

(3) ∀a, b ∈ AR[a ⊑ b ∧ b ≤fin c → ∃d ⊑ c[a ≤fin d ]].

1. ([N]∞,⊆, r) satisfies A2, as for all a ∈ [N]<∞, {b : b ⊆ a} is
finite.

2. (E [∞],≤, r) satisfies A2 if |F| < ∞, as if a = (xi )i<n ∈ E [<∞],
then there are finitely many subspaces of a.

3. (E [∞],≤, r) does not satisfy A2 if |F| = ∞, as if a = (x0, x1),
then span{λx0 + x1} is a (block) subspace for any λ ∈ F.
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Axiom (A3, Amalgamation)

The depth function defined by, for B ∈ R and a ∈ AR:

depthB(a) :=

{
min{n < ω : a ≤fin rn(B)}, if such n exists

∞, otherwise

satisfies the following:

(1) If depthB(a) < ∞, then for all A ∈ [depthB(a),B], [a,A] ̸= ∅.
(2) A ≤ B and [a,A] ̸= ∅ imply that there exists

A′ ∈ [depthB(a),B] such that ∅ ≠ [a,A′] ⊆ [a,A].
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We let ARn be the image of the map rn(−), i.e. the set of all
finite approximations of length n.

Axiom (A4, Pigeonhole)

If depthB(a) < ∞ and if O ⊆ ARlh(a)+1, then there exists
A ∈ [depthB(a),B] such that rlh(a)+1[a,A] ⊆ O or
rlh(a)+1[a,A] ⊆ Oc .

1. ([N]∞,⊆, r) satisfies A4, due to the pigeonhole principle.

2. (E [∞],≤, r) satisfies A4 if |F| = 2, due to Hindman’s theorem.

3. (E [∞],≤, r) does not satisfy A4 if |F| > 2, as Hindman’s
theorem fails for |F| > 2.
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Observe that every A ∈ R can be uniquely identified as the
sequence (rn(A))n<ω, an element of ARN. Therefore, we may
identify R as a subset of ARN.

Recall that in infinite-dimensional Ramsey theory, we require R to
be a closed subset of XN. We make a similar requirement here.

Definition

(R,≤, r) is a closed triple if for all ⊑-increasing sequence (an)n<ω

of elements in AR such that lh(an) = n, there exists some A ∈ R
such that rn(A) = an for all n.

In other words, R is a metrically closed subset of ARN.
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Definition

A topological Ramsey space is a closed triple (R,≤, r) satisfying
A1-A4.

Definition

Let (R,≤, r) be a topological Ramsey space. A set X ⊆ R is
Ramsey if for all A ∈ R and a ∈ AR↾A, there exists some
B ∈ [a,A] such that [a,B] ⊆ X or [a,B] ⊆ X c .

Theorem (Todorčević)

Let (R,≤, r) be a topological Ramsey space. If AR is countable
and X ⊆ R is Borel, then X is Ramsey.
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Weak A2 spaces

Although countable vector spaces fail to satisfy the axioms A1-A4
for |F| > 2, a rich Ramsey theory of countable vector spaces has
been developed in the past 20 years with lots of similarities to
topological Ramsey theory.

Question. Is there an overarching framework that encompasses
topological Ramsey theory and the Ramsey theory of countable
vector spaces?
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Axiom (wA2, Weak Finitisation)

There is a quasi-ordering ≤fin on AR such that:

(w1) {b ∈ AR : b ≤fin a} is countable for all b ∈ AR.

(2) A ≤ B iff ∀n∃m[rn(A) ≤fin rm(B)].

(3) ∀a, b ∈ AR[a ⊑ b ∧ b ≤fin c → ∃d ⊑ c[a ≤fin d ]].
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Definition

A triple (R,≤, r) is a weak A2 space, or just wA2-space, if it is a
closed triple satisfying A1, wA2, A3.

Thus, topological Ramsey spaces and countable vector spaces are
examples of wA2-spaces.
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Abstract Kastanas Game

We discuss one application of wA2-spaces by introducing the
abstract Kastanas game. Unless stated otherwise, we assume that
(R,≤, r) is a wA2-space.

Definition (Kastanas, Cano-Di Prisco)

Let A ∈ R and a ∈ AR↾A. The Kastanas game played below
[a,A], denoted as K [a,A], is:

I A0 ∈ [a,A] A1 ∈ [a1,B0] · · ·
II a1 ∈ rlh(a)+1[a,A0] a2 ∈ [a1,A1]

B0 ∈ rlh(a1)+1[a1,A0] B1 ∈ [a2,A1]

The outcome of this game is limn→∞ an, i.e. the unique B ∈ R
such that rlh(a)+n(B) = an for all n.
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Definition

We say that I (similarly II) has a strategy in K [a,A] to reach
X ⊆ R if it has a strategy in K [a,A] to ensure the outcome is in
X .

Definition

A set X ⊆ R is Kastanas Ramsey if for all A ∈ R and a ∈ AR↾A,
there exists some B ∈ [a,A] such that one of the following holds:

1. I has a strategy in K [a,B] to reach X c .

2. II has a strategy in K [a,B] to reach X .
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Definition

We say that I (similarly II) has a strategy in K [a,A] to reach
X ⊆ R if it has a strategy in K [a,A] to ensure the outcome is in
X .

Definition

A set X ⊆ R is Kastanas Ramsey if for all A ∈ R and a ∈ AR↾A,
there exists some B ∈ [a,A] such that one of the following holds:

1. I has a strategy in K [a,B] to reach X c .

(Definition of Ramsey: [a,B] ⊆ X c .)

2. II has a strategy in K [a,B] to reach X .

(Definition of Ramsey: [a,B] ⊆ X .)
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Theorem (Kastanas)

A set X ⊆ [N]∞ is Ramsey iff Kastanas Ramsey.

1. By the Borel determinacy for Polish spaces, we have that
every Borel subset of [N]∞ is Kastanas Ramsey.

2. By Kastanas’ theorem, we can conclude the Galvin-Prikry
theorem, i.e. every Borel subset of [N]∞ is Ramsey.

Question. Can we generalise this fact to topological Ramsey
spaces?
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Theorem (Y.)

If (R,≤, r) is a closed triple satisfying A1-A4, then X ⊆ R is
Ramsey iff it is Kastanas Ramsey.

1. By the Borel determinacy of Polish spaces, we can conclude
that if AR is countable, then every Borel subset of R is
Kastanas Ramsey.

2. Since Kastanas Ramsey ⇐⇒ Ramsey, we get Todorčević’s
theorem that every Borel subset of R is Ramsey.
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What about analytic sets?

Theorem (Mathias-Silver)

Every analytic subset of [N]∞ is Ramsey.

Theorem (Todorčević)

Let (R,≤, r) be a topological Ramsey space, and assume that AR
is countable. Then every analytic subset of R is Ramsey.
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Since analytic determinacy is not a theorem of ZFC, it’s not clear
that the equivalence between Kastanas Ramsey sets and Ramsey
sets implies both theorems.

Good news. We can use the equivalence to prove both theorems.
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To simplify things, we shall demonstrate this for [N]∞.

Goal. Provide a proof of the Mathias-Silver theorem in the
following steps:

1. Define a version of the Kastanas game (and Kastanas Ramsey
sets) on [N]∞ × 2∞. By the Borel determinacy for Polish
spaces, all Borel subsets of [N]∞ × 2∞ are Kastanas Ramsey.

2. Show that Kastanas Ramsey sets are closed under projections.
Therefore, analytic subsets of [N]∞ are Kastanas Ramsey.

3. By Kastanas’ theorem, analytic subsets of [N]∞ are Ramsey.
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Kastanas game on [N]∞ × 2∞

Definition

Let A ∈ [N]∞, and let a ∈ [N]<∞ and p ∈ 2|a|. The Kastanas
game played below [a,A, p], denoted as K [a,A, p], is:

I A0 = A A1 ⊆ B0 · · ·
II x0 ∈ A0 x1 ∈ A1 · · ·

ε0 ∈ {0, 1} ε1 ∈ {0, 1} · · ·
B0 ⊆ A0 B1 ⊆ A1 · · ·

where:

• max(a) < x0 < x1 < · · · .
• An,Bn are infinite subsets of N.

The outcome of the game is
(a ∪ {x0, x1, . . . }, p⌢(ε0, ε1, . . . )) ∈ [a,A]× 2∞.
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Definition

We say that I (similarly II) has a strategy in K [a,A, p] to reach
C ⊆ [N]∞ × 2∞ if it has a strategy in K [a,A, p] to ensure the
outcome is in C.

Definition

A set C ⊆ [N]∞ × 2∞ is Kastanas Ramsey if for all A ∈ [N]∞,
a ∈ [N]<∞↾A and p ∈ 2|a|, there exists some B ∈ [a,A] such that
one of the following holds:

1. I has a strategy in K [a,B, p] to reach Cc .

2. II has a strategy in K [a,B, p] to reach C.
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Let π0 : [N]∞ × 2∞ → [N]∞ be the projection to the first
coordinate.

Theorem

If C ⊆ [N]∞ × 2∞ is Kastanas Ramsey, then π0[C] ⊆ [N]∞ is
Kastanas Ramsey.
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We split the proof of the theorem into two lemmas.

Lemma

Let C ⊆ [N]∞ × 2∞ be a subset. Let A ∈ [N]∞, a ∈ [N]<∞↾A. If
II has a strategy in K [a,A, p] to reach C for some p ∈ 2lh(a), then
II has a strategy in K [a,A] to reach π0[C].

Proof.

The strategy by II in the game K [a,A, p] to reach C, with the εn’s
ignored, is a strategy for II in K [a,A] to reach π0[C].
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Lemma

Let C ⊆ [N]∞ × 2∞ be a subset. Let A ∈ [N]∞, a ∈ [N]<∞↾A. If
for all p ∈ 2lh(a), there exists some C ∈ [a,A] such that I has a
strategy in K [a,C , p] to reach Cc , then there exists some
B ∈ [a,A] such that I has a strategy in K [a,B] to reach π0[C]c .

Since π0[Cc ] ̸= π0[C]c in general, the same naive argument doesn’t
work here.

In the interest of time, we shall prove this lemma only for a = ∅.
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Proof of the second Lemma

Let B ∈ [A]∞ and σ be a strategy for I in K [∅,B, ∅] (in
[N]∞ × 2∞) to reach Cc . How do we define a strategy τ for I in
K [∅,B] (in [N]∞) to reach π0[C]c?

• Say that the outcome of a complete run in K [∅,B] (in [N]∞),
following τ , is D = {x0, x1, . . . }.

• D ∈ π0[C]c iff for all x ∈ 2∞, (D, x) ∈ Cc .

• Goal. Design τ such that, for any outcome D and any
x ∈ 2∞ (in [N]∞), there is a simulation of the game in
K [∅,B, ∅] (in [N]∞ × 2∞) following σ, such that the outcome
is (D, x). By our choice of σ, (D, x) ∈ Cc .



K [∅,B], defining τ for I:
I A0 = B τ(x0,B0) := A1

1 τ(x0,B0, x1,B1) := A3
2

II x0 ∈ A0 x1 ∈ A1

B0 ⊆ A0 B1 ⊆ A1

(Simulation) K [∅,B, ∅], I following σ:
I A0 = B A0

1 := σ(x0, 0,B0) A1
2 := σ(x0, 0,B0, x1, 1,A

0
2)

II x0 ∈ A0 x1 ∈ A1

ε0 = 0 ε1 = 0
B0 ⊆ A0 B1 ⊆ A1

or

I A0 = B A0
1 := σ(x0, 0,B0) A1

2 := σ(x0, 0,B0, x1, 1,A
0
2)

II x0 ∈ A0 x1 ∈ A1

ε0 = 1 ε1 = 0
B0 ⊆ A0 B1 ⊆ A1
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Generalising to wA2-spaces

Let (R,≤, r) be a wA2-space. In a way similar to how we go from
[N]∞ to [N]∞ × 2∞, we may consider going from R to R× 2∞.

More precisely, we shall construct the triple (R× 2∞,⪯, r) in the
following manner:

1. (A, u) ⪯ (B, v) ⇐⇒ A ≤ B.

2. rn(A, u) = (rn(A), u↾n).

Note that ⪯ is not a partial order.

Lemma

Let (R,≤, r) be a wA2-space. Then the closed triple
(R× 2∞,⪯, r) defined above is a wA2-space which does not
satisfy A4.
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This means that ([N]∞ × 2∞,⪯, r) is a wA2-space, so we may
consider the abstract Kastanas game on ([N]∞ × 2∞,⪯, r).

Fact

The abstract Kastanas game on ([N]∞ × 2∞,⪯, r) is precisely the
“modified” Kastanas game that we presented earlier.
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Theorem (Y.)

Let (R,≤, r) be a wA2-space. If C ⊆ R× 2∞ is Kastanas Ramsey,
then π0[C] ⊆ R is Kastanas Ramsey.

Corollary (Y.)

Let (R,≤, r) be a wA2-space, and assume that AR is countable.
Then every analytic subset of R is Kastanas Ramsey.
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Strategically Ramsey sets

Todorčević’s theorem asserts that if (R,≤, r) is a closed triple
satisfying A1-A4, and AR is countable, then every analytic subset
of R is Kastanas Ramsey. What about countable vector spaces?

Theorem (Rosendal)

Every analytic subset of E [∞] is strategically Ramsey.

Proposition

A subset X ⊆ E [∞] is Kastanas Ramsey iff it is strategically
Ramsey.
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Thanks for listening!

1. The Ramsey theorem for ([N]∞,⊆, r) (pigeonhole principle)
and (E [∞],≤, r) when |F| = 2 are both true.

2. Todorčević developed topological Ramsey theory to provide a
general framework to prove these results.

3. (E [∞],≤, r) for |F| > 2 is not a topological Ramsey space, but
still contains a rich Ramsey theory. wA2-space proposes an
extension of topological Ramsey theory to such spaces.

4. We defined the abstract Kastanas game for wA2-spaces and
Kastanas Ramsey sets. For topological Ramsey spaces,
Kastanas Ramsey sets are precisely Ramsey sets.

5. By considering (R× 2∞,⪯, r), we showed that every analytic
subset of R is Kastanas Ramsey. This implies that every
analytic subset of E [∞] is strategically Ramsey.
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