Clement Yung

7 Nov 2025

D

<

DA 1/16

Intro TM construction Primitive recursive functions
[] 000000000 00000

Today:

1. Turing machine construction for Diff(n, m).

2. Exp(n, m) is primitive recursive.

Intro TM construction Primitive recursive functions
o ©00000000 00000

Turing machine construction

In the past couple of weeks you've learnt to construct TMs for
various basic functions, including those from the recent online quiz.

We'll discuss today how to construct the TM for the function
Diff(n, m):

n—m, ifn>m,

Diff(n, m) = {

0, otherwise.

Intro

TM construction Primitive recursive functions
0®0000000 00000

Attempt 1. If the TM has several cases to consider (e.g. in this
case n > mor n < m), then a good place to start would be to
construct a TM that works for a specific case. For instance, let's
try to construct a TM that works whenever n > m. Let’s also not
worry if the TM halts. An example would be that:

0111110111000...

0
0111000000000 ..

The idea is actually quite similar to the online quiz. We keep
jumping between the 1's in each block, removing them one at a
time. So let's try to do that.

Intro

TM construction

0O0@000000

Primitive recursive functions
00000

N S RS

OR2
1R3
OR3
OL4

1R2
0L4
OR3

Intro TM construction Primitive recursive functions
o 000@00000 00000

Idea.

1. State 1: We move the scanner to the first block of 1's.

2. State 2: We traverse through the 1's. Once we hit the end of
the 1's (i.e. the first 0), we move the scanner to the right (i.e.
the first 1 in the second block), and move on to state 3.

3. State 3: We change the 1 to a 0, then we start traversing
through the 0's leftward. We denote that as state 4.

4. State 4: Once we hit the first 1 from the right, we change the
1 to a 0, then start traversing through the 0's rightward. We
put that back into state 3.

Intro TM construction Primitive recursive functions
o] 0000e0000 00000

Issue. This TM doesn't work if n < m. Remember that we need
to get 01000... if n < m.

We have two problems to solve:

1. We need to ensure that the leftmost 1 is not converted to 0.

2. We need to delete all remaining 1's on the right.

Intro

TM construction

00000000

Primitive recursive functions
00000

Attempt 2. We have to check that whether a 1 on the left block
that we're trying to change is the final 1. That is, the next cell on

the left is a 0.

oo\|cnm-z>wl\>u§

OR2
1R3
1R3
OL4
OR7

OR8

1R2
0L4
1L5
1R6
OR3
1R8
ORS8

Intro TM construction Primitive recursive functions
o 000000800 00000

Idea.

1. State 4: When we hit a 1, instead of changing it to 0 and
start moving right, we go one step further to the left to check
if it's the final 1 remaining (i.e. state 5).

2. State 5: If it's not the final 1, go to state 6. If it's the final 1,
go to state 7. Either way, move to scanner back to the 1
we're concerned with.

3. State 6: It's not the final 1, so change it to 0 and go back to
state 3 (i.e. start traversing the 0s).

4. State 7: It's the final 1, so we keep it at 1, and change all
remaining numbers to 0 (state 8).

5. State 8: Keep going right and change everything to 0!

Issue. This TM doesn't halt.

Intro TM construction

[e] 000000080

Primitive recursive functions
00000

Attempt 3. Let's make this TM halt. We achieve this by placing

a special marker at the end of the tape.

M 0 1 2
1 | OR2

2 | OR9 1R2

3 | OR3 O0L4 OLI11
4 | 0L4 1L5

5 | OR7 1R6

6 OR3

7 1R8

8 | OR8 OR8 OLI11
9 | 2L10 1R9

10 | 1IR3 1L10

11 | OL11 1L12

12 1112

Intro TM construction Primitive recursive functions
o 00000000 00000

Idea.

1. State 2: Before we start erasing the 1s, we head to state 9.

2. State 9: We head to the back of the second block of 1s. Once
we reach the end (hit a 0), we place a 2, and head to state 10.

3. State 10: We head back to the 0 between the two blocks of
1s, head to state 3 and start erasing the 1s.

4. State 11 & 12: We move the scanner back to the leftmost cell.

5. State 3 & 8: When the scanner goes rightwards, if it sees a 2
then it changes the 2 to a 0 and halts the TM.

Issue. None! Yay~

Primitive recursive functions
©0000

Primitive recursive functions

Let's recall how primitive recursive functions are constructed:
Definition
The initial functions are:

1. (Zero) O, the 1-place function s.t. O(n) =0 for all n € N,

2. (Successor) S, the 1-place function s.t. S(n) = n+ 1 for all
neN.

3. (Projection) 7k where 1 < i < k, the k-place function s.t.
78(n1, ..., nk) = n; for all (ny,...,ng) € NX.

Intro

TM construction Primitive recursive functions
000000000 0@000

Definition
Let k > 1, g is a k-place function, his a (k 4 2)-place function. A

(k + 1)-place function f is obtained from g and h by primitive
recursion if f is defined as follows:

1. f(ni,...,nk,0) =g(n,...,nk).
2. f(n,...,ng,m~+1)=h(n,...,ng,m,f(ni,...,ng, m)).

Intro TM construction Primitive recursive functions
o 000«)00 0000

Consider the exponential function Exp(x, n) := x".

Fact

Exp is a 2-place primitive recursive function.

The rest of the slides will be used to prove this fact.

Intro

TM construction
[e]

Primitive recursive functions
000000000

[e]e]e] o}

Recall from the notes that the following two functions are primitive
recursive:

Mult(n, m) :=n-m,

n—1, ifn>0,

Pred(n) := 0 oo

We shall use these two functions to define Exp.

Intro

TM construction Primitive recursive functions
000000000 0000®

We need to find a 1-place function g and a 3-place function h such
that Exp is obtained from g and h via primitive recursion. We
have:

Exp(n,0) =1 = (S50 O)(n),
i.e. we take g to be the function So O. And:

Exp(n, m+ 1) = Mult(n, Exp(n, m))
= (Multo(n{,73))(n, m, Exp(n, m)),
i.e. we take f to be the function Multo(n3, 73).

Note that Exp is not obtained from O and Mult via primitive
recursion, as Mult is not a 3-place function.

	Intro
	TM construction
	Primitive recursive functions

