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Today:

1. Turing machine construction for Diff(n,m).

2. Exp(n,m) is primitive recursive.
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Turing machine construction

In the past couple of weeks you’ve learnt to construct TMs for
various basic functions, including those from the recent online quiz.

We’ll discuss today how to construct the TM for the function
Diff(n,m):

Diff(n,m) =

{
n −m, if n > m,

0, otherwise.
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Attempt 1. If the TM has several cases to consider (e.g. in this
case n > m or n ≤ m), then a good place to start would be to
construct a TM that works for a specific case. For instance, let’s
try to construct a TM that works whenever n > m. Let’s also not
worry if the TM halts. An example would be that:

0111110111000 . . .

↓
0111000000000 . . .

The idea is actually quite similar to the online quiz. We keep
jumping between the 1’s in each block, removing them one at a
time. So let’s try to do that.
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M 0 1

1 0R2
2 1R3 1R2
3 0R3 0L4
4 0L4 0R3
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Idea.

1. State 1: We move the scanner to the first block of 1’s.

2. State 2: We traverse through the 1’s. Once we hit the end of
the 1’s (i.e. the first 0), we move the scanner to the right (i.e.
the first 1 in the second block), and move on to state 3.

3. State 3: We change the 1 to a 0, then we start traversing
through the 0’s leftward. We denote that as state 4.

4. State 4: Once we hit the first 1 from the right, we change the
1 to a 0, then start traversing through the 0’s rightward. We
put that back into state 3.
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Issue. This TM doesn’t work if n ≤ m. Remember that we need
to get 01000 . . . if n < m.

We have two problems to solve:

1. We need to ensure that the leftmost 1 is not converted to 0.

2. We need to delete all remaining 1’s on the right.
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Attempt 2. We have to check that whether a 1 on the left block
that we’re trying to change is the final 1. That is, the next cell on
the left is a 0.

M 0 1

1 0R2
2 1R3 1R2
3 1R3 0L4
4 0L4 1L5
5 0R7 1R6
6 0R3
7 1R8
8 0R8 0R8
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Idea.

1. State 4: When we hit a 1, instead of changing it to 0 and
start moving right, we go one step further to the left to check
if it’s the final 1 remaining (i.e. state 5).

2. State 5: If it’s not the final 1, go to state 6. If it’s the final 1,
go to state 7. Either way, move to scanner back to the 1
we’re concerned with.

3. State 6: It’s not the final 1, so change it to 0 and go back to
state 3 (i.e. start traversing the 0s).

4. State 7: It’s the final 1, so we keep it at 1, and change all
remaining numbers to 0 (state 8).

5. State 8: Keep going right and change everything to 0!

Issue. This TM doesn’t halt.
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Attempt 3. Let’s make this TM halt. We achieve this by placing
a special marker at the end of the tape.

M 0 1 2

1 0R2
2 0R9 1R2
3 0R3 0L4 0L11
4 0L4 1L5
5 0R7 1R6
6 0R3
7 1R8
8 0R8 0R8 0L11
9 2L10 1R9
10 1R3 1L10
11 0L11 1L12
12 1L12
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Idea.

1. State 2: Before we start erasing the 1s, we head to state 9.

2. State 9: We head to the back of the second block of 1s. Once
we reach the end (hit a 0), we place a 2, and head to state 10.

3. State 10: We head back to the 0 between the two blocks of
1s, head to state 3 and start erasing the 1s.

4. State 11 & 12: We move the scanner back to the leftmost cell.

5. State 3 & 8: When the scanner goes rightwards, if it sees a 2
then it changes the 2 to a 0 and halts the TM.

Issue. None! Yay∼
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Primitive recursive functions

Let’s recall how primitive recursive functions are constructed:

Definition

The initial functions are:

1. (Zero) O, the 1-place function s.t. O(n) = 0 for all n ∈ N.
2. (Successor) S , the 1-place function s.t. S(n) = n + 1 for all

n ∈ N.
3. (Projection) πk

i where 1 ≤ i ≤ k , the k-place function s.t.
πk
i (n1, . . . , nk) = ni for all (n1, . . . , nk) ∈ Nk .
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Definition

Let k ≥ 1, g is a k-place function, h is a (k + 2)-place function. A
(k + 1)-place function f is obtained from g and h by primitive
recursion if f is defined as follows:

1. f (n1, . . . , nk , 0) = g(n1, . . . , nk).

2. f (n1, . . . , nk ,m + 1) = h(n1, . . . , nk ,m, f (n1, . . . , nk ,m)).
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Consider the exponential function Exp(x , n) := xn.

Fact

Exp is a 2-place primitive recursive function.

The rest of the slides will be used to prove this fact.
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Recall from the notes that the following two functions are primitive
recursive:

Mult(n,m) := n ·m,

Pred(n) :=

{
n − 1, if n > 0,

0, if n = 0.

We shall use these two functions to define Exp.
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We need to find a 1-place function g and a 3-place function h such
that Exp is obtained from g and h via primitive recursion. We
have:

Exp(n, 0) = 1 = (S ◦ O)(n),

i.e. we take g to be the function S ◦ O. And:

Exp(n,m + 1) = Mult(n,Exp(n,m))

= (Mult ◦(π3
1, π

3
3))(n,m,Exp(n,m)),

i.e. we take f to be the function Mult ◦(π3
1, π

3
3).

Note that Exp is not obtained from O and Mult via primitive
recursion, as Mult is not a 3-place function.


	Intro
	TM construction
	Primitive recursive functions

