MAT337 Introduction to Real Analysis - Fall 2025 Week 12 Tutorial

Problem 8.1.F.

Show that $f_n(x) = n \sin(\frac{x}{n})$ converges uniformly on [-R, R] for any finite R but does not converge uniformly on \mathbb{R} .

Solution

Let g(x) = x. We shall show that (f_n) converges uniformly to g on [-R, R] for any R > 0, but not on \mathbb{R} .

Let $h_n(x) := f_n(x) - g(x) = n \sin(\frac{x}{n}) - x$. Note that h_n has the following properties:

- (1) $h'_n(x) = \cos(\frac{x}{n}) 1 \le 0$ for all x, so h_n is a decreasing function.
- (2) $h_n(-x) = -h_n(x)$. In particular, $h_n(0) = 0$.

Observe that $|h_n(x)| \leq |h_n(R)|$ for all $x \in [-R, R]$ – if $x \geq 0$, then $0 \geq h_n(x) \geq h_n(R)$, so $|h_n(x)| \leq |h_n(R)|$. If x < 0, then $|h_n(x)| = |h_n(-x)| \leq |h_n(R)|$. Therefore, for all $x \in [-R, R]$:

$$|h_n(x)| \le |h_n(R)| = \left| n \sin\left(\frac{R}{n}\right) - R \right|.$$

Exercise. Show that $\lim_{n\to\infty} n \sin\left(\frac{R}{n}\right) = R$, by expressing the limit as a derivative.

Thus, for any $\varepsilon > 0$, we may let N be large enough so that for all $n \geq N$, $\left| n \sin\left(\frac{R}{n}\right) - R \right| < \varepsilon$. Then for all $n \geq N$:

$$\sup_{x \in [-R,R]} |f_n(x) - g(x)| = \sup_{x \in [-R,R]} |h_n(x)|$$

$$\leq |h_n(R)|$$

$$< \varepsilon,$$

so f_n converges to g uniformly on [-R, R].

We now show that (f_n) does not converge uniformly on \mathbb{R} . Suppose for a contradiction that (f_n) converges uniformly on \mathbb{R} . Since (f_n) converges to g pointwise on

 \mathbb{R} (because every $x \in \mathbb{R}$ is in some closed interval [-R, R]), this would imply that (f_n) converges uniformly to g on \mathbb{R} . Thus, there exists some M such that for all $n \geq M$, $|f_n(x) - g(x)| < 1$ for all $x \in \mathbb{R}$ and $n \geq M$. But:

$$\left| f_n \left(\frac{n\pi}{n} \right) - g(n\pi) \right| = |0 - n\pi| = n\pi > 1,$$

which is a contradiction.

Remarks/Takeaways.

- (1) If (f_n) converges to g uniformly, then (f_n) converges to g pointwise that is, $\lim_{n\to\infty} f_n(x) = g(x)$ for all x. Therefore, one may compute the limit $\lim_{n\to\infty} f_n(x)$ to know what the uniform limit of (f_n) is.
- (2) Here is a common method to show that a sequence of functions (f_n) does not converge uniformly on some set $S \subseteq \mathbb{R}$.
 - (a) Check if (f_n) converges pointwise on S. If not, find a point $x \in S$ such that $\lim_{n\to\infty} f_n(x)$ doesn't exist.
 - (b) If (f_n) converges pointwise on S, then define the function $g(x) := \lim_{n \to \infty} f_n(x)$ on S. Show that there exists some $\varepsilon > 0$ such that for all N there is some $n \ge N$ and $x \in S$ such that $|f_n(x) g(x)| \ge \varepsilon$.

Problem 8.1.H.

Suppose that $f_n : [0,1] \to \mathbb{R}$ is a sequence of C^1 functions (i.e., functions with continuous derivatives) that converges pointwise to a function f. If there is a constant M such that $||f'_n||_{\infty} \leq M$ for all n, then prove that (f_n) converges to f uniformly.

Solution

By the completeness theorem for $C([0,1],\mathbb{R})$ (as [0,1] is compact), it suffices to show that for all $\varepsilon > 0$, there exists some N such that for all $m, n \geq N$, $||f_n - f_m||_{\infty} < \varepsilon$.

Recall that if $||f'_n||_{\infty} \leq M$, then f_n is Lipschitz continuous with Lipschitz constant M. In other words, for all $x, y \in [0, 1]$:

$$|f_n(x) - f_n(y)| \le M|x - y|.$$

We fix some $\varepsilon > 0$. Let $K \geq \frac{3M}{\varepsilon}$ be any integer, and let $x_i = \frac{i}{K}$ for all $i \leq K$. We are defining x_i this way so that for every $x \in [0,1]$, there is some i such that $|x - x_i| < \frac{1}{K}$.

Since $(f_n(x_i))$ is Cauchy for all i, there exists some N large enough so that for all $m, n \geq N$ and $i \leq K$, $|f_n(x_i) - f_m(x_i)| < \frac{\varepsilon}{3}$. Then for any $x \in [0, 1]$:

$$|f_n(x) - f_m(x)| \le |f_n(x) - f_n(x_i)| + |f_n(x_i) - f_m(x_i)| + |f_m(x_i) - f_m(x)|$$

$$\le M|x - x_i| + |f_n(x_i) - f_m(x_i)| + M|x - x_i|$$

$$< M \cdot \frac{\varepsilon}{3M} + \frac{\varepsilon}{3} + M \cdot \frac{\varepsilon}{3M}$$

$$= \varepsilon.$$

Remarks/Takeaways.

- (1) The idea of the proof can be summarised into the following steps:
 - (a) Given an ε , we can fix finitely many points x_0, \ldots, x_K such that for any $x \in [0, 1]$, x is very close to x_i for some i.
 - (b) Since all the f_n 's are Lipschitz continuous with the same Lipschitz constant, this implies that for every n, if x is very close to x_i then $f_n(x)$ is also very close to $f(x_i)$.
 - (c) We apply the Cauchy property of $(f_n(x_i))$ for i = 0, ..., K. Then for all $n, m \ge N$ and $x \in [0, 1]$:
 - i. $f_n(x)$ is very close to $f_n(x_i)$ (by (b) above).
 - ii. $f_n(x_i)$ is very close to $f_m(x_i)$ (by the Cauchy property of $(f_n(x_i))$).
 - iii. $f_m(x_i)$ is very close to $f_m(x)$ (by (b) above).

Therefore, $f_n(x)$ is very close to $f_m(x)$.

- (2) The compactness of the domain [0,1] is necessary. Here is a counterexample with the domain [0,1] replaced by \mathbb{R} let $f_n(x) = \frac{1}{n}x$. It's clear that $\lim_{n\to\infty} f_n(x) = 0$ for all x, so (f_n) converges to f pointwise. Furthermore, $||f'_n||_{\infty} = \frac{1}{n} \leq 1$ for all n. Exercise. Show that (f_n) does not converge to f uniformly on f.
- (3) It is possible to give a proof of Problem 8.1.H without using the completeness theorem for $C([0,1],\mathbb{R})$, but you need to first show that f is uniformly continuous. Once that is done, the proof is very similar, with f_m replaced by f (and some additional requirements on the choice of N).

Problem 8.2.F.

Let $f_n(x) = \frac{\arctan(nx)}{\sqrt{n}}$.

- (a) Find $f(x) = \lim_{n \to \infty} f_n(x)$, and show that (f_n) converges uniformly to f on \mathbb{R} .
- (b) Compute $\lim_{n\to\infty} f'_n(x)$, and compare this with f'(x).
- (c) Where is the convergence of f'_n uniform? Prove your answer.

Solution

(a) We shall show that (f_n) converges to 0 uniformly on \mathbb{R} . Fix some $\varepsilon > 0$. Observe that $|\arctan(nx)| \leq \frac{\pi}{2}$ for all x. Thus, we may choose N large enough so that $\frac{\pi}{2N} < \varepsilon$. Then for all $n \geq N$:

$$\sup_{x \in \mathbb{R}} \left| \frac{\arctan(nx)}{\sqrt{n}} \right| \le \frac{\pi}{2\sqrt{n}} < \varepsilon.$$

Thus, (f_n) converges to 0 uniformly on \mathbb{R} .

(b) For each n, we have:

$$f'_n(x) = \frac{1}{\sqrt{n}} \left(\frac{n}{1 + n^2 x^2} \right) = \frac{\sqrt{n}}{1 + n^2 x^2}.$$

Note that $(f'_n(x))$ converges to 0 for all $x \neq 0$ - for each x, we may apply the squeeze theorem to show that:

$$0 \le \lim_{n \to \infty} \frac{\sqrt{n}}{1 + n^2 x^2} \le \lim_{n \to \infty} \frac{\sqrt{n}}{n^2 x^2} = \lim_{n \to \infty} \frac{1}{n^{\frac{3}{2}} x^2} = 0.$$

However, $f'_n(0) = \sqrt{n}$, so $(f'_n(0))$ diverges to $+\infty$.

(c) We shall show that (f'_n) -doesn't converge to 0 uniformly on $\mathbb{R} \setminus \{0\}$, but it converges to 0 uniformly $\mathbb{R} \setminus (-r, r)$ for all r > 0.

Suppose that (f'_n) converges to 0 uniformly on $\mathbb{R} \setminus \{0\}$, so there exists some N such that for all $n \geq N$, $|f'_n| < \frac{1}{2}$. If $x = \frac{1}{n} > 0$, then:

$$|f'_n(x)| = \frac{\sqrt{n}}{1 + n^2(1/n)^2} = \frac{\sqrt{n}}{2} \ge \frac{1}{2},$$

4

which is a contradiction.

Fix some r > 0. We now show that (f'_n) converges to 0 uniformly on $\mathbb{R} \setminus (-r, r)$. Observe that f'_n is decreasing for all n, so:

$$|f'_n(x)| = \frac{\sqrt{n}}{1 + n^2 x^2} \le \frac{1}{n^{\frac{3}{2}} x^2} \le \frac{1}{n^{\frac{3}{2}} r^2}.$$

Fix $\varepsilon > 0$. Let N be large enough so that $\frac{1}{n^{\frac{3}{2}}r^2} < \varepsilon$. Then $|f'_n(x)| < \varepsilon$ for all x, so (f'_n) converges to 0 uniformly on $\mathbb{R} \setminus (-r, r)$.

Remarks/Takeaways.

(1) Notice that the method we used to show that (f'_n) doesn't converge uniformly on $\mathbb{R} \setminus \{0\}$ (i.e. proof by contradiction) is the same as that of Problem 8.1.F.